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EDITOR’S NOTE.

No apology is needed for the publication of the present
new edition of The Study and Difficulties of Mathematics,—
a characteristic production of one of the most eminent and
luminous of English mathematical writers of the present cen-
tury. De Morgan, though taking higher rank as an original
inquirer than either Huxley or Tyndall, was the peer and
lineal precursor of these great expositors of science, and he
applied to his lifelong task an historical equipment and a
psychological insight which have not yet borne their full ed-
ucational fruit. And nowhere have these distinguished qual-
ities been displayed to greater advantage than in the present
work, which was conceived and written with the full natu-
ral freedom, and with all the fire, of youthful genius. For
the contents and purpose of the book the reader may be
referred to the Author’s Preface. The work still contains
points (notable among them is its insistence on the study of
logic), which are insufficiently emphasised, or slurred, by el-
ementary treatises; while the freshness and naturalness of its
point of view contrasts strongly with the mechanical charac-
ter of the common text-books. Elementary instructors and
students cannot fail to profit by the general loftiness of its
tone and the sound tenor of its instructions.

The original treatise, which was published by the Soci-
ety for the Diffusion of Useful Knowledge and bears the date
of 1831, is now practically inaccessible, and is marred by nu-
merous errata and typographical solecisms, from which, it is
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hoped, the present edition is free. References to the remain-
ing mathematical text-books of the Society for the Diffusion
of Useful Knowledge now out of print have either been omit-
ted or supplemented by the mention of more modern works.
The few notes which have been added are mainly biblio-
graphical in character, and refer, for instance, to modern
treatises on logic, algebra, the philosophy of mathematics,
and pangeometry. For the portrait and autograph signature
of De Morgan, which graces the page opposite the title, The
Open Court Publishing Company is indebted to the cour-
tesy of Principal David Eugene Smith, of the State Normal
School at Brockport, N. Y.

Thomas J. McCormack
La Salle, Ill., Nov. 1, 1898.



AUTHOR’S PREFACE.

In compiling the following pages, my object has been to
notice particularly several points in the principles of algebra
and geometry, which have not obtained their due importance
in our elementary works on these sciences. There are two
classes of men who might be benefited by a work of this kind,
viz., teachers of the elements, who have hitherto confined
their pupils to the working of rules, without demonstration,
and students, who, having acquired some knowledge under
this system, find their further progress checked by the in-
sufficiency of their previous methods and attainments. To
such it must be an irksome task to recommence their studies
entirely; I have therefore placed before them, by itself, the
part which has been omitted in their mathematical educa-
tion, presuming throughout in my reader such a knowledge
of the rules of algebra, and the theorems of Euclid, as is
usually obtained in schools.

It is needless to say that those who have the advantage of
University education will not find more in this treatise than
a little thought would enable them to collect from the best
works now in use [1831], both at Cambridge and Oxford. Nor
do I pretend to settle the many disputed points on which I
have necessarily been obliged to treat. The perusal of the
opinions of an individual, offered simply as such, may excite
many to become inquirers, who would otherwise have been
workers of rules and followers of dogmas. They may not
ultimately coincide in the views promulgated by the work
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which first drew their attention, but the benefit which they
will derive from it is not the less on that account. I am not,
however, responsible for the contents of this treatise, further
than for the manner in which they are presented, as most of
the opinions here maintained have been found in the writings
of eminent mathematicians.

It has been my endeavor to avoid entering into the purely
metaphysical part of the difficulties of algebra. The stu-
dent is, in my opinion, little the better for such discussions,
though he may derive such conviction of the truth of results
by deduction from particular cases, as no à priori reasoning
can give to a beginner. In treating, therefore, on the nega-
tive sign, on impossible quantities, and on fractions of the
form 0

0
, etc., I have followed the method adopted by several

of the most esteemed continental writers, of referring the
explanation to some particular problem, and showing how
to gain the same from any other. Those who admit such
expressions as −a,

√
−a, 0

0
, etc., have never produced any

clearer method; while those who call them absurdities, and
would reject them altogether, must, I think, be forced to
admit the fact that in algebra the different species of contra-
dictions in problems are attended with distinct absurdities,
resulting from them as necessarily as different numerical re-
sults from different numerical data. This being granted, the
whole of the ninth chapter of this work may be considered
as an inquiry into the nature of the different misconceptions,
which give rise to the various expressions above alluded to.
To this view of the question I have leaned, finding no other
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so satisfactory to my own mind.
The number of mathematical students, increased as it

has been of late years, would be much augmented if those
who hold the highest rank in science would condescend to
give more effective assistance in clearing the elements of the
difficulties which they present. If any one claiming that title
should think my attempt obscure or erroneous, he must share
the blame with me, since it is through his neglect that I have
been enabled to avail myself of an opportunity to perform a
task which I would gladly have seen confided to more skilful
hands.

Augustus De Morgan.
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CHAPTER I.

INTRODUCTORY REMARKS ON THE NATURE AND OBJECTS
OF MATHEMATICS.

The Object of this Treatise is—(1) To point out to the stu-
dent of Mathematics, who has not the advantage of a tutor,
the course of study which it is most advisable that he should
follow, the extent to which he should pursue one part of the
science before he commences another, and to direct him as
to the sort of applications which he should make. (2) To
treat fully of the various points which involve difficulties and
which are apt to be misunderstood by beginners, and to de-
scribe at length the nature without going into the routine of
the operations.

No person commences the study of mathematics without
soon discovering that it is of a very different nature from
those to which he has been accustomed. The pursuits to
which the mind is usually directed before entering on the
sciences of algebra and geometry, are such as languages and
history, etc. Of these, neither appears to have any affin-
ity with mathematics; yet, in order to see the difference
which exists between these studies,—for instance, history
and geometry,—it will be useful to ask how we come by
knowledge in each. Suppose, for example, we feel certain
of a fact related in history, such as the murder of Cæsar,
whence did we derive the certainty? how came we to feel
sure of the general truth of the circumstances of the narra-
tive? The ready answer to this question will be, that we have
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not absolute certainty upon this point; but that we have the
relation of historians, men of credit, who lived and published
their accounts in the very time of which they write; that suc-
ceeding ages have received those accounts as true, and that
succeeding historians have backed them with a mass of cir-
cumstantial evidence which makes it the most improbable
thing in the world that the account, or any material part of
it, should be false. This is perfectly correct, nor can there be
the slightest objection to believing the whole narration upon
such grounds; nay, our minds are so constituted, that, upon
our knowledge of these arguments, we cannot help believing,
in spite of ourselves. But this brings us to the point to which
we wish to come; we believe that Cæsar was assassinated by
Brutus and his friends, not because there is any absurdity
in supposing the contrary, since every one must allow that
there is just a possibility that the event never happened: not
because we can show that it must necessarily have been that,
at a particular day, at a particular place, a successful adven-
turer must have been murdered in the manner described, but
because our evidence of the fact is such, that, if we apply the
notions of evidence which every-day experience justifies us in
entertaining, we feel that the improbability of the contrary
compels us to take refuge in the belief of the fact; and, if
we allow that there is still a possibility of its falsehood, it is
because this supposition does not involve absolute absurdity,
but only extreme improbability.

In mathematics the case is wholly different. It is true that
the facts asserted in these sciences are of a nature totally dis-



nature and objects of mathematics. 3

tinct from those of history; so much so, that a comparison
of the evidence of the two may almost excite a smile. But
if it be remembered that acute reasoners, in every branch of
learning, have acknowledged the use, we might almost say
the necessity, of a mathematical education, it must be ad-
mitted that the points of connexion between these pursuits
and others are worth attending to. They are the more so,
because there is a mistake into which several have fallen,
and have deceived others, and perhaps themselves, by cloth-
ing some false reasoning in what they called a mathematical
dress, imagining that, by the application of mathematical
symbols to their subject, they secured mathematical argu-
ment. This could not have happened if they had possessed a
knowledge of the bounds within which the empire of math-
ematics is contained. That empire is sufficiently wide, and
might have been better known, had the time which has been
wasted in aggressions upon the domains of others, been spent
in exploring the immense tracts which are yet untrodden.

We have said that the nature of mathematical demon-
stration is totally different from all other, and the difference
consists in this—that, instead of showing the contrary of the
proposition asserted to be only improbable, it proves it at
once to be absurd and impossible. This is done by showing
that the contrary of the proposition which is asserted is in
direct contradiction to some extremely evident fact, of the
truth of which our eyes and hands convince us. In geometry,
of the principles alluded to, those which are most commonly
used are—



on the study of mathematics. 4

I. If a magnitude be divided into parts, the whole is
greater than either of those parts.

II. Two straight lines cannot inclose a space.
III. Through one point only one straight line can be

drawn, which never meets another straight line, or which
is parallel to it.

It is on such principles as these that the whole of geom-
etry is founded, and the demonstration of every proposition
consists in proving the contrary of it to be inconsistent with
one of these. Thus, in Euclid, Book I., Prop. 4, it is shown
that two triangles which have two sides and the included an-
gle respectively equal are equal in all respects, by proving
that, if they are not equal, two straight lines will inclose a
space, which is impossible. In other treatises on geometry,
the same thing is proved in the same way, only the self-
evident truth asserted sometimes differs in form from that
of Euclid, but may be deduced from it, thus—

Two straight lines which pass through the same two
points must either inclose a space, or coincide and be
one and the same line, but they cannot inclose a space,
therefore they must coincide. Either of these propositions
being granted, the other follows immediately; it is, there-
fore, immaterial which of them we use. We shall return to
this subject in treating specially of the first principles of
geometry.

Such being the nature of mathematical demonstration,
what we have before asserted is evident, that our assurance
of a geometrical truth is of a nature wholly distinct from
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that which we can by any means obtain of a fact in history
or an asserted truth of metaphysics. In reality, our senses
are our first mathematical instructors; they furnish us with
notions which we cannot trace any further or represent in
any other way than by using single words, which every one
understands. Of this nature are the ideas to which we attach
the terms number, one, two, three, etc., point, straight line,
surface; all of which, let them be ever so much explained,
can never be made any clearer than they are already to a
child of ten years old.

But, besides this, our senses also furnish us with the
means of reasoning on the things which we call by these
names, in the shape of incontrovertible propositions, such as
have been already cited, on which, if any remark is made by
the beginner in mathematics, it will probably be, that from
such absurd truisms as “the whole is greater than its part,”
no useful result can possibly be derived, and that we might
as well expect to make use of “two and two make four.” This
observation, which is common enough in the mouths of those
who are commencing geometry, is the result of a little pride,
which does not quite like the humble operation of beginning
at the beginning, and is rather shocked at being supposed
to want such elementary information. But it is wanted, nev-
ertheless; the lowest steps of a ladder are as useful as the
highest. Now, the most common reflection on the nature of
the propositions referred to will convince us of their truth.
But they must be presented to the understanding, and re-
flected on by it, since, simple as they are, it must be a mind
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of a very superior cast which could by itself embody these
axioms, and proceed from them only one step in the road
pointed out in any treatise on geometry.

But, although there is no study which presents so sim-
ple a beginning as that of geometry, there is none in which
difficulties grow more rapidly as we proceed, and what may
appear at first rather paradoxical, the more acute the stu-
dent the more serious will the impediments in the way of his
progress appear. This necessarily follows in a science which
consists of reasoning from the very commencement, for it is
evident that every student will feel a claim to have his ob-
jections answered, not by authority, but by argument, and
that the intelligent student will perceive more readily than
another the force of an objection and the obscurity arising
from an unexplained difficulty, as the greater is the ordinary
light the more will occasional darkness be felt. To remove
some of these difficulties is the principal object of this Trea-
tise.

We shall now make a few remarks on the advantages to
be derived from the study of mathematics, considered both
as a discipline for the mind and a key to the attainment
of other sciences. It is admitted by all that a finished or
even a competent reasoner is not the work of nature alone;
the experience of every day makes it evident that education
develops faculties which would otherwise never have mani-
fested their existence. It is, therefore, as necessary to learn
to reason before we can expect to be able to reason, as it is
to learn to swim or fence, in order to attain either of those
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arts. Now, something must be reasoned upon, it matters
not much what it is, provided that it can be reasoned upon
with certainty. The properties of mind or matter, or the
study of languages, mathematics, or natural history, may be
chosen for this purpose. Now, of all these, it is desirable to
choose the one which admits of the reasoning being verified,
that is, in which we can find out by other means, such as
measurement and ocular demonstration of all sorts, whether
the results are true or not. When the guiding property of
the loadstone was first ascertained, and it was necessary to
learn how to use this new discovery, and to find out how far
it might be relied on, it would have been thought advisable
to make many passages between ports that were well known
before attempting a voyage of discovery. So it is with our
reasoning faculties: it is desirable that their powers should
be exerted upon objects of such a nature, that we can tell
by other means whether the results which we obtain are true
or false, and this before it is safe to trust entirely to reason.
Now the mathematics are peculiarly well adapted for this
purpose, on the following grounds:

1. Every term is distinctly explained, and has but one
meaning, and it is rarely that two words are employed to
mean the same thing.

2. The first principles are self-evident, and, though de-
rived from observation, do not require more of it than has
been made by children in general.

3. The demonstration is strictly logical, taking nothing
for granted except the self-evident first principles, resting
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nothing upon probability, and entirely independent of au-
thority and opinion.

4. When the conclusion is attained by reasoning, its truth
or falsehood can be ascertained, in geometry by actual mea-
surement, in algebra by common arithmetical calculation.
This gives confidence, and is absolutely necessary, if, as was
said before, reason is not to be the instructor, but the pupil.

5. There are no words whose meanings are so much alike
that the ideas which they stand for may be confounded. Be-
tween the meanings of terms there is no distinction, except
a total distinction, and all adjectives and adverbs expressing
difference of degrees are avoided. Thus it may be necessary
to say, “A is greater than B;” but it is entirely unimpor-
tant whether A is very little or very much greater than B.
Any proposition which includes the foregoing assertion will
prove its conclusion generally, that is, for all cases in which
A is greater than B, whether the difference be great or little.
Locke mentions the distinctness of mathematical terms, and
says in illustration: “The idea of two is as distinct from the
idea of three as the magnitude of the whole earth is from that
of a mite. This is not so in other simple modes, in which it
is not so easy, nor perhaps possible for us to distinguish be-
tween two approaching ideas, which yet are really different;
for who will undertake to find a difference between the white
of this paper, and that of the next degree to it?”

These are the principal grounds on which, in our opinion,
the utility of mathematical studies may be shown to rest, as
a discipline for the reasoning powers. But the habits of mind
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which these studies have a tendency to form are valuable in
the highest degree. The most important of all is the power
of concentrating the ideas which a successful study of them
increases where it did exist, and creates where it did not.
A difficult position, or a new method of passing from one
proposition to another, arrests all the attention and forces
the united faculties to use their utmost exertions. The habit
of mind thus formed soon extends itself to other pursuits,
and is beneficially felt in all the business of life.

As a key to the attainment of other sciences, the use
of the mathematics is too well known to make it necessary
that we should dwell on this topic. In fact, there is not in
this country any disposition to under-value them as regards
the utility of their applications. But though they are now
generally considered as a part, and a necessary one, of a
liberal education, the views which are still taken of them as
a part of education by a large proportion of the community
are still very confined.

The elements of mathematics usually taught are con-
tained in the sciences of arithmetic, algebra, geometry, and
trigonometry. We have used these four divisions because
they are generally adopted, though, in fact, algebra and ge-
ometry are the only two of them which are really distinct.
Of these we shall commence with arithmetic, and take the
others in succession in the order in which we have arranged
them.



CHAPTER II.

ON ARITHMETICAL NOTATION.

THE first ideas of arithmetic, as well as those of other sci-
ences, are derived from early observation. How they come
into the mind it is unnecessary to inquire; nor is it possible
to define what we mean by number and quantity. They are
terms so simple, that is, the ideas which they stand for are so
completely the first ideas of our mind, that it is impossible
to find others more simple, by which we may explain them.
This is what is meant by defining a term; and here we may
say a few words on definitions in general, which will apply
equally to all sciences.

Definition is the explaining a term by means of others,
which are more easily understood, and thereby fixing its
meaning, so that it may be distinctly seen what it does im-
ply, as well as what it does not. Great care must be taken
that the definition itself is not a tacit assumption of some
fact or other which ought to be proved. Thus, when it is
said that a square is “a four-sided figure, all whose sides
are equal, and all whose angles are right angles,” though no
more is said than is true of a square, yet more is said than
is necessary to define it, because it can be proved that if a
four-sided figure have all its sides equal, and one only of its
angles a right angle, all the other angles must be right an-
gles also. Therefore, in making the above definition, we do,
in fact, affirm that which ought to be proved. Again, the
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above definition, though redundant in one point, is, strictly
speaking, defective in another, for it omits to state whether
the sides of the figure are straight lines or curves. It should
be, “a square is a four-sided rectilinear figure, all of whose
sides are equal, and one of whose angles is a right angle.”

As the mathematical sciences owe much, if not all, of
the superiority of their demonstrations to the precision with
which the terms are defined, it is most essential that the be-
ginner should see clearly in what a good definition consists.
We have seen that there are terms which cannot be defined,
such as number and quantity. An attempt at a definition
would only throw a difficulty in the student’s way, which is
already done in geometry by the attempts at an explanation
of the terms point, straight line, and others, which are to be
found in treatises on that subject. A point is defined to be
that “which has no parts, and which has no magnitude;” a
straight line is that which “lies evenly between its extreme
points.” Now, let any one ask himself whether he could have
guessed what was meant, if, before he began geometry, any
one had talked to him of “that which has no parts and which
has no magnitude,” and “the line which lies evenly between
its extreme points,” unless he had at the same time men-
tioned the words “point” and “straight line,” which would
have removed the difficulty? In this case the explanation is
a great deal harder than the term to be explained, which
must always happen whenever we are guilty of the absurdity
of attempting to make the simplest ideas yet more simple.

A knowledge of our method of reckoning, and of writing
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down numbers, is taught so early, that the method by which
we began is hardly recollected. Few, therefore, reflect upon
the very commencement of arithmetic, or upon the simplic-
ity and elegance with which calculations are conducted. We
find the method of reckoning by ten in our hands, we hardly
know how, and we conclude, so natural and obvious does it
seem, that it came with our language, and is a part of it; and
that we are not much indebted to instruction for so simple a
gift. It has been well observed, that if the whole earth spoke
the same language, we should think that the name of any
object was not a mere sign chosen to represent it, but was
a sound which had some real connexion with the thing; and
that we should laugh at, and perhaps persecute, any one who
asserted that any other sound would do as well if we chose
to think so. We cannot fall into this error, because, as it is,
we happen to know that what we call by the sound “horse,”
the Romans distinguished as well by that of “equus,” but
we commit a similar mistake with regard to our system of
numeration, because at present it happens to be received by
all civilised nations, and we do not reflect on what was done
formerly by almost all the world, and is done still by savages.
The following considerations will, perhaps, put this matter
on a right footing, and show that in our ideas of arithmetic
we have not altogether rid ourselves of the tendency to at-
tach ideas of mysticism to numbers which has prevailed so
extensively in all times.

We know that we have nine signs to stand for the first
nine numbers, and one for nothing, or zero. Also, that to
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represent ten we do not use a new sign, but combine two
of the others, and denote it by 10, eleven by 11, and so
on. But why was the number ten chosen as the limit of
our separate symbols—why not nine, eight, or eleven? If we
recollect how apt we are to count on the fingers, we shall
be at no loss to see the reason. We can imagine our system
of numeration formed thus:—A man proceeds to count a
number, and to help the memory he puts a finger on the
table for each one which he counts. He can thus go as far
as ten, after which he must begin again, and by reckoning
the fingers a second time he will have counted twenty, and so
on. But this is not enough; he must also reckon the number
of times which he has done this, and as by counting on the
fingers he has divided the things which he is counting into
lots of ten each, he may consider each lot as a unit of its
kind, just as we say a number of sheep is one flock, twenty
shillings are one pound. Call each lot a ten. In this way
he can count a ten of tens, which he may call a hundred, a
ten of hundreds, or a thousand, and so on. The process of
reckoning would then be as follows:—Suppose, to choose an
example, a number of faggots is to be counted. They are first
tied up in bundles of ten each, until there are not so many
as ten left. Suppose there are seven over. We then count the
bundles of ten as we counted the single faggots, and tie them
up also by tens, forming new bundles of one hundred each
with some bundles of ten remaining. Let these last be six in
number. We then tie up the bundles of hundreds by tens,
making bundles of thousands, and find that there are five
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bundles of hundreds remaining. Suppose that on attempting
to tie up the thousands by tens, we find there are not so
many as ten, but only four. The number of faggots is then
4 thousands, 5 hundreds, 6 tens, and 7.

The next question is, how shall we represent this number
in a short and convenient manner? It is plain that the way
to do this is a matter of choice. Suppose then that we distin-
guish the tens by marking their number with one accent, the
hundreds with two accents, and the thousands with three.
We may then represent this number in any of the following
ways:— 76′5′′4′′′, 6′75′′4′′′, 6′4′′′5′′7, 4′′′5′′6′7, the whole num-
ber of ways being 24. But this is more than we want; one
certain method of representing a number is sufficient. The
most natural way is to place them in order of magnitude, ei-
ther putting the largest collection first or the smallest; thus
4′′′5′′6′7, or 76′5′′4′′′. Of these we choose the first.

In writing down numbers in this way it will soon be ap-
parent that the accents are unnecessary. Since the singly
accented figure will always be the second from the right, and
so on, the place of each number will point out what accents
to write over it, and we may therefore consider each figure as
deriving a value from the place in which it stands. But here
this difficulty occurs. How are we to represent the numbers
3′′′3′, and 4′′′2′7 without accents? If we write them thus,
33 and 427, they will be mistaken for 3′3 and 4′′2′7. This
difficulty will be obviated by placing cyphers so as to bring
each number into the place allotted to the sort of collection
which it represents; thus, since the trebly accented letters,
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or thousands, are in the fourth place from the right, and the
singly accented letters in the second, the first number may
be written 3030, and the second 4027. The cypher, which
plays so important a part in arithmetic that it was anciently
called the art of cypher, or cyphering, does not stand for any
number in itself, but is merely employed, like blank types in
printing, to keep other signs in those places which they must
occupy in order to be read rightly. We may now ask what
would have been the case if, instead of ten fingers, men had
had more or less. For example, by what signs would 4567
have been represented, if man had nine fingers instead of
ten? We may presume that the method would have been the
same, with the number nine represented by 10 instead of ten,
and the omission of the symbol 9. Suppose this number of
faggots is to be counted by nines. Tie them up in bundles of
nine, and we shall find 4 faggots remaining. Tie these bun-
dles again in bundles of nine, each of which will, therefore,
contain eighty-one, and there will be 3 bundles remaining.
These tied up in the same way into bundles of nine, each
of which contains seven hundred and twenty-nine, will leave
2 odd bundles, and, as there will be only six of them, the
process cannot be carried any further. If, then, we repre-
sent, by 1′, a bundle of nine, or a nine, by 1′′ a nine of nines,
and so on, the number which we write 4567, must be writ-
ten 6′′′2′′3′4. In order to avoid confusion, we will suffer the
accents to remain over all numbers which are not reckoned
in tens, while those which are so reckoned shall be written in
the common way. The following is a comparison of the way
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in which numbers in the common system are written, and in
the one which we have just explained:

COUNTING BY

Tens 1 2 3 4 5 6 7 8 9 10 11 12 13
Nines 1 2 3 4 5 6 7 8 1′0 1′1 1′2 1′3 1′4

Tens 14 15 16 17 18 19 20 30 40 50
Nines 1′5 1′6 1′7 1′8 2′0 2′1 2′2 3′3 4′4 5′5

Tens 60 70 80 90 100
Nines 6′6 7′7 8′8 1′′1′0 1′′2′1

We will now write, in the common way, in the tens’ sys-
tem, the process which we went through in order to find how
to represent the number 4567 in that of the nines, thus:

9) 4567
9) 507 —rem. 4.
9) 56 —rem. 3.
9) 6 —rem. 2.

0 —rem. 6. Representation required, 6′′′2′′3′4.

The processes of arithmetic are the same in principle
whatever system of numeration is used. To show this, we
subjoin a question in each of the first four rules, worked
both in the common system, and in that of the nines. There
is the difference, that, in the first, the tens must be carried,
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and in the second the nines.

ADDITION.

636 7′′7′6
987 1′′′3′′1′6
403 4′′8′7

2026 2′′′7′′0′1

SUBTRACTION.

1384 1′′′8′′0′7
797 1′′′0′′7′5

587 7′′2′2

MULTIPLICATION.

297 3′′ 6′ 0
136 1′′ 6′ 1

1782 3 6 0
891 2 4 0 0

297 3 6 0

40392 6′′′′1′′′ 3′′ 6′ 0

DIVISION.

633) 79125 (125 7′′7′3) 1v 3iv 0iii 4ii 7i 6∗ (1′′4′8
633 7 7 3

1582 4 2 1 7
1266 3 4 2 3

3165 6 8 4 6
3165 6 8 4 6

0 0

∗To avoid too great a number of accents, Roman numerals are put
instead of them; also, to avoid confusion, the accents are omitted after
the first line.
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The student should accustom himself to work questions
in different systems of numeration, which will give him a
clearer insight into the nature of arithmetical processes than
he could obtain by any other method. When he uses a system
in which numbers are counted by a number greater than ten,
he will want some new symbols for figures. For example,
in the duodecimal system, where twelve is the number of
figures supposed, twelve will be represented by 1′0; there
must, therefore, be a distinct sign for ten and eleven: a nine
and six reversed, thus 9and 6, might be used for these.



CHAPTER III.

ELEMENTARY RULES OF ARITHMETIC.

As Soon as the beginner has mastered the notion of arith-
metic, he may be made acquainted with the meaning of the
algebraical signs +, −, ×, =, and also with that for divi-
sion, or the common way of representing a fraction. There
is no difficulty in these signs or in their use. Five minutes’
consideration will make the symbol 5 + 3 present as clear
an idea as the words “5 added to 3.” The reason why they
usually cause so much embarrassment is, that they are gen-
erally deferred until the student commences algebra, when
he is often introduced at the same time to the representa-
tion of numbers by letters, the distinction of known and un-
known quantities, the signs of which we have been speaking,
and the use of figures as the exponents of letters. Either of
these four things is quite sufficient at a time, and there is no
time more favorable for beginning to make use of the signs
of operation than when the habit of performing the opera-
tions commences. The beginner should exercise himself in
putting the simplest truths of arithmetic in this new shape,
and should write such sentences as the following frequently:

2 + 7 = 9,

6− 4 = 2,

1 + 8 + 4− 6 = 4 + 2 + 1,

2× 2 + 12× 12 = 14× 10 + 2× 2× 2.
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These will accustom him to the meaning of the signs, just
as he was accustomed to the formation of letters by writ-
ing copies. As he proceeds through the rules of arithmetic,
he should take care never to omit connecting each opera-
tion with its sign, and should avoid confounding operations
together and considering them as the same, because they
produce the same result. Thus 4 × 7 does not denote the
same operation as 7×4, though the result of both is 28. The
first is four multiplied by seven, four taken seven times; the
second is seven multiplied by four, seven taken four times;
and that 4×7 = 7×4 is a proposition to be proved, not to be
taken for granted. Again, 1

7
× 4 and 4

7
are marks of distinct

operations, though their result is the same, as we shall show
in treating of fractions.

The examples which a beginner should choose for practice
should be simple and should not contain very large numbers.
The powers of the mind cannot be directed to two things at
once: if the complexity of the numbers used requires all the
student’s attention, he cannot observe the principle of the
rule which he is following. Now, at the commencement of
his career, a principle is not received and understood by the
student as quickly as it is explained by the instructor. He
does not, and cannot, generalise at all; he must be taught to
do so; and he cannot learn that a particular fact holds good
for all numbers unless by having it shown that it holds good
for some numbers, and that for those some numbers he may
substitute others, and use the same demonstration. Until he
can do this himself he does not understand the principle, and
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he can never do this except by seeing the rule explained and
trying it himself on small numbers. He may, indeed, and will,
believe it on the word of his instructor, but this disposition is
to be checked. He must be told, that whatever is not gained
by his own thought is not gained to any purpose; that the
mathematics are put in his way purposely because they are
the only sciences in which he must not trust the authority
of any one. The superintendence of these efforts is the real
business of an instructor in arithmetic. The merely showing
the student a rule by which he is to work, and comparing his
answer with a key to the book, printed for the preceptor’s
private use, to save the trouble which he ought to bestow
upon his pupil, is not teaching arithmetic any more than
presenting him with a grammar and dictionary is teaching
him Latin. When the principle of each rule has been well
established by showing its application to some simple exam-
ples (and the number of these requisite will vary with the
intellect of the student), he may then proceed to more com-
plicated cases, in order to acquire facility in computation.
The four first rules may be studied in this way, and these
will throw the greatest light on those which succeed.

The student must observe that all operations in arith-
metic may be resolved into addition and subtraction; that
these additions and subtractions might be made with coun-
ters; so that the whole of the rules consist of processes in-
tended to shorten and simplify that which would otherwise
be long and complex. For example, multiplication is con-
tinued addition of the same number to itself—twelve times
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seven is twelve sevens added together. Division is a contin-
ued subtraction of one number from another; the division of
129 by 3 is a continued subtraction of 3 from 129, in order
to see how many threes it contains. All other operations
are composed of these four, and are, therefore, the result of
additions and subtractions only.

The following principles, which occur so continually in
mathematical operations that we are, at length, hardly sen-
sible of their presence, are the foundation of the arithmetical
rules:

I. We do not alter the sum of two numbers by taking away
any part of the first, if we annex that part to the second. This
may be expressed by signs, in a particular instance, thus:

(20− 6) + (32 + 6) = 20 + 32.

II. We do not alter the difference of two numbers by in-
creasing or diminishing one of them, provided we increase or
diminish the other as much. This may be expressed thus, in
one instance:

(45 + 7)− (22 + 7) = 45− 22,

(45− 8)− (22− 8) = 45− 22.

III. If we wish to multiply one number by another, for
example 156 by 29, we may break up 156 into any number of
parts, multiply each of these parts by 29, and add the results.
For example, 156 is made up of 100, 50, and 6. Then

156× 29 = 100× 29 + 50× 29 + 6× 29.
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IV. The same thing may be done with the multiplier in-
stead of the multiplicand. Thus, 29 is made up of 18, 6,
and 5. Then

156× 29 = 156× 18 + 156× 6 + 156× 5.

V. If any two or more numbers be multiplied together, it
is indifferent in what order they are multiplied, the result is
the same. Thus,

10× 6× 4× 3 = 3× 10× 4× 6 = 6× 10× 4× 3, etc.

VI. In dividing one number by another, for example 156
by 12, we may break up the dividend, and divide each of its
parts by the divisor, and then add the results. We may part
156 into 72, 60, and 24; this is expressed thus:

156

12
=

72

12
+

60

12
+

24

12
.

The same thing cannot be done with the divisor. It is not
true that

156

12
=

156

3
+

156

4
+

156

5
.

The student should discover the reason for himself.
A prime number is one which is not divisible by any other

number except 1. When the process of division can be per-
formed, it can be ascertained whether a given number is
divisible by any other number, that is, whether it is prime
or not. This can be done by dividing it by all the numbers
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which are less than its half, since it is evident that it cannot
be divided into a number of parts, each of which is greater
than its half. This process would be laborious when the given
number is large; still it may be done, and by this means the
number itself may be reduced to its prime factors,∗ as it is
called, that is, it may either be shown to be a prime number
itself or made up by multiplying several prime numbers to-
gether. Thus, 306 is 34×9, or 2×17×9, or 2×17×3×3, and
has for its prime factors 2, 17, and 3, the latter of which is re-
peated twice in its formation. When this has been done with
two numbers, we can then see whether they have any factors
in common, and, if that be the case, we can then find what
is called their greatest common measure or divisor ; that is,
the number made by multiplying all their common factors.
It is an evident truth that, if a number can be divided by
the product of two others, it can be divided by each of them.
If a number can be parted into an exact number of twelves,
it can be parted also into a number of sixes, twos, or fours.
It is also true that, if a number can be divided by any other
number, and the quotient can then be divided by a third
number, the original number can be divided by the product
of the other two. Thus, 144 is divisible by 2; the quotient, 72,
is divisible by 6; and the original number is divisible by 6×2
or 12. It is also true that, if two numbers are prime, their
product is divisible by no numbers except themselves. Thus,

∗The factors of a number are those numbers by the multiplication
of which it is made.
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17×11 is divisible by no numbers except 17 and 11. Though
this is a simple proposition, its proof is not so, and cannot be
given to the beginner. From these things it follows that the
greatest common measure of two numbers (measure being an
old word for divisor) is the product of all the prime factors
which the two possess in common. For example, the num-
bers 90 and 100, which, when reduced to their prime factors,
are 2× 5× 3× 3 and 2× 2× 5× 5, have the common factors
2 and 5, and are divisible by 2× 5, or 10. The quotients are
3× 3 and 2× 5, or 9 and 10, which have no common factor
remaining, and 2×5, or 10, is the greatest common measure
of 90 and 100. The same may be shown in the case of any
other numbers. But the method we have mentioned of re-
solving numbers into their prime factors, being troublesome
to apply when the numbers are large, is usually abandoned
for another. It happens frequently that a method simple in
principle is laborious in practice, and the contrary.

When one number is divided by another, and its quo-
tient and remainder obtained, the dividend may be recov-
ered again by multiplying the quotient and divisor together,
and adding the remainder to the product. Thus 171 divided
by 27 gives a quotient 6 and a remainder 9, and 171 is made
by multiplying 27 by 6, and adding 9 to the product. That
is, 171 = 27 × 6 + 9. Now, from this equation it is easy
to show that every number which divides 171 and 27 also
divides 9, that is, every common measure of 171 and 27 is
also a common measure of 27 and 9. We can also show that
27 and 9 have no common measures which are not common
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to 171 and 27. Therefore, the common measures of 171 and
27 are those, and no others, which are common to 27 and 9;
the greatest common measure of each pair must, therefore,
be the same, that is, the greatest common measure of a di-
visor and dividend is also the greatest common measure of
the remainder and divisor. Now take the common process
for finding the greatest common measure of two numbers; for
example, 360 and 420, which is as follows, and abbreviate the
words greatest common measure into their initials g. c. m.:

360)420(1
360

60)360(6
360

0

From the theorem above enunciated it appears that

g. c. m. of 420 and 360 is g. c. m. of 60 and 360;

g. c. m. of 60 and 360 is 60;

because 60 divides both 60 and 360, and no number can have
a greater measure than itself. Thus may be seen the reason
of the common rule for finding the greatest common measure
of two numbers.

Every number which can be divided by another without
remainder is called a multiple of it. Thus, 12, 18, and 42 are
multiples of 6, and the last is a common multiple of 6 and 7,
because it is divisible both by 6 and 7. The only things
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which it is necessary to observe on this subject are, (1), that
the product of two numbers is a common multiple of both;
(2), that when the two numbers have a common measure
greater than 1, there is a common multiple less than their
product; (3), that when they have no common measure ex-
cept 1, the least common multiple is their product. The first
of these is evident; the second will appear from an example.
Take 10 and 8, which have the common measure 2, since the
first is 2×5 and the second 2×4. The product is 2×2×4×5,
but 2× 4× 5 is also a common multiple, since it is divisible
by 2×4, or 8, and by 2×5, or 10. To find this common mul-
tiple we must, therefore, divide the product by the greatest
common measure. The third principle cannot be proved in
an elementary way, but the student may convince himself of
it by any number of examples. He will not, for instance, be
able to find a common multiple of 8 and 7 less than 8 × 7
or 56.



CHAPTER IV.

ARITHMETICAL FRACTIONS.

When the student has perfected himself in the four rules,
together with that for finding the greatest common measure,
he should proceed at once to the subject of fractions. This
part of arithmetic is usually supposed to present extraordi-
nary difficulties; whereas, the fact is that there is nothing in
fractions so difficult, either in principle or practice, as the
rule for finding the greatest common measure. We would
recommend the student not to attend to the distinctions of
proper and improper, pure or mixed fractions, etc., as there
is no distinction whatever in the rules, which are common to
all these fractions.

When one number, as 56, is to be divided by another,
as 8, the process is written thus: 56

8
. By this we mean that

56 is to be divided into 8 equal parts, and one of these parts
is called the quotient. In this case the quotient is 7. But it is
equally possible to divide 57 into 8 equal parts; for example,
we can divide 57 feet into 8 equal parts, but the eighth part
of 57 feet will not be an exact number of feet, since 57 does
not contain an exact number of eights; a part of a foot will be
contained in the quotient 57

8
, and this quotient is therefore

called a fraction, or broken number. If we divide 57 into
56 and 1, and take the eighth part of each of these, whose
sum will give the eighth part of the whole, the eighth of
56 feet is 7 feet; the eighth of 1 foot is a fraction, which we



arithmetical fractions. 29

write 1
8
, and 57

8
is 7 + 1

8
, which is usually written 71

8
. Both

of these quantities 57
8

, and 71
8
, are called fractions; the only

difference is that, in the second, that part of the quotient
which is a whole number is separated from the part which is
less than any whole number.

There are two ways in which a fraction may be consid-
ered. Let us take, for example, 5

8
. This means that 5 is to

be divided into 8 parts, and 5
8

stands for one of these parts.
The same length will be obtained if we divide 1 into 8 parts,
and take 5 of them, or find 1

8
× 5. To prove this let each of

the lines drawn below represent 1
8

of an inch; repeat 1
8

five
times, and repeat the same line eight times.

In each column is 1
8
th of an inch repeated 8 times; that is

one inch. There are, then, 5 inches in all, since there are five
columns. But since there are 8 lines, each line is the eighth
of 5 inches, or 5

8
, but each line is also 1

8
th of an inch repeated

5 times, or 1
8
× 5. Therefore, 5

8
= 1

8
× 5; that is, in order to

find 5
8

inches, we may either divide five inches into 8 parts,
and take one of them, or divide one inch into 8 parts, and
take five of them. The symbol 5

8
is made to stand for both

these operations, since they lead to the same result.
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The most important property of a fraction is, that if
both its numerator and denominator are multiplied by the
same number, the value of the fraction is not altered; that
is, 3

5
is the same as 12

20
, or each part is the same when we

divide 12 inches into 20 parts, as when we divide 3 inches
into 5 parts. Again, we get the same length by dividing
1 inch into 20 parts, and taking 12 of them, which we
get by dividing 1 inch into 5 parts and taking 3 of them.
This hardly needs demonstration. Taking 12 out of 20 is
taking 3 out of 5, since for every 3 which 12 contains,
there is a 5 contained in 20. Every fraction, therefore,
admits of innumerable alterations in its form, without any
alteration in its value. Thus, 1

2
= 2

4
= 3

6
= 4

8
= 5

10
, etc.;

2
7

= 4
14

= 6
21

= 8
28

, etc.
On the same principle it is shown that the terms of a

fraction may be divided by any number without any alter-
ation of its value. There will now be no difficulty in reducing
fractions to a common denominator, in reducing a fraction
to its lowest terms; neither in adding nor subtracting frac-
tions, for all of which the rules are given in every book of
arithmetic.

We now come to a rule which presents more peculiar dif-
ficulties in point of principle than any at which we have yet
arrived. If we could at once take the most general view of
numbers, and give the beginner the extended notions which
he may afterwards attain, the mathematics would present
comparatively few impediments. But the constitution of our
minds will not permit this. It is by collecting facts and prin-
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ciples, one by one, and thus only, that we arrive at what are
called general notions; and we afterwards make comparisons
of the facts which we have acquired and discover analogies
and resemblances which, while they bind together the fabric
of our knowledge, point out methods of increasing its ex-
tent and beauty. In the limited view which we first take of
the operations which we are performing, the names which
we give are necessarily confined and partial; but when, af-
ter additional study and reflection, we recur to our former
notions, we soon discover processes so resembling one an-
other, and different rules so linked together, that we feel it
would destroy the symmetry of our language if we were to
call them by different names. We are then induced to extend
the meaning of our terms, so as to make two rules into one.
Also, suppose that when we have discovered and applied a
rule and given the process which it teaches a particular name,
we find that this process is only a part of one more general,
which applies to all cases contained under the first, and to
others besides. We have only the alternative of inventing a
new name, or of extending the meaning of the former one so
as to merge the particular process in the more general one
of which it is a part. Of this we can give an instance. We
began with reasoning upon simple numbers, such as 1, 2, 3,
20, etc. We afterwards divided these into parts, of which
we took some number, and which we called fractions, such
as 2

3
, 7

2
, 1

5
, etc. Now there is no number which may not

be considered as a fraction in as many different ways as we
please. Thus 7 is 14

2
or 21

3
, etc.; 12 is 144

12
, 72

6
, etc. Our new
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notion of fraction is, then, one which includes all our former
ideas of number, and others besides. It is then customary
to represent by the word number, not only our first notion
of it, but also the extended one, of which the first is only a
part. Those to which our first notions applied we call whole
numbers, the others fractional numbers, but still the name
number is applied to both 2 and 1

2
, 3 and 3

5
. The rule of

which we have spoken is another instance. It is called the
multiplication of fractional numbers. Now, if we return to
our meaning of the word multiplication, we shall find that
the multiplication of one fraction by another appears an ab-
surdity. We multiply a number by taking it several times and
adding these together. What, then, is meant by multiplying
by a fraction? Still, a rule has been found which, in applying
mathematics, it is necessary to use for fractions, in all cases
where multiplication would have been used had they been

whole numbers. Of this we shall now give a simple example.
Take an oblong figure (which is called a rectangle in geom-
etry), such as ABCD, and find the magnitudes of the sides
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AB and BC in inches. Draw the line EF equal in length to
one inch, and the square G, each of whose sides is one inch. If
the lines AB and BC contain an exact number of inches, the
rectangle ABCD contains an exact number of squares, each

equal to G, and the number of squares contained is found by
multiplying the number of inches in AB by the number of
inches in BC. In the present case the number of squares is
3 × 4, or 12. Now, suppose another rectangle A′B′C ′D′, of
which neither of the sides is an exact number of inches; sup-
pose, for example, that A′B′ is 2

3
of an inch, and that B′C ′ is

5
7

of an inch. We may show, by reasoning, that we can find

how much A′B′C ′D′ is of G by forming a fraction which has
the product of the numerators of 2

3
and 5

7
for its numerator,

and the product of their denominators for its denominator;
that is, that A′B′C ′D′ contains 10

21
of G. Here then appears a

connexion between the multiplication of whole numbers, and
the formation of a fraction, whose numerator is the product
of two numerators, and its denominator the product of the
corresponding denominators. These operations will always
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come together, that is whenever a question occurs in which,
when whole numbers are given, those numbers are to be mul-
tiplied together; when fractional numbers are given, it will
be necessary, in the same case, to multiply the numerator by
the numerator, and the denominator by the denominator,
and form the result into a fraction, as above.

This would lead us to suspect some connexion between
these two operations, and we shall accordingly find that when
whole numbers are formed into fractions, they may be mul-
tiplied together by this very rule. Take, for example, the
numbers 3 and 4, whose product is 12. The first may be
written as 15

5
, and the second as 8

2
. Form a fraction from the

product of the numerators and denominators of these, which
will be 120

10
, which is 12, the product of 3 and 4.

From these considerations it is customary to call the frac-
tion which is produced from two others in the manner above
stated, the product of those two fractions, and the process
of finding the third fraction, multiplication. We shall always
find the first meaning of the word multiplication included in
the second, in all cases in which the quantities represented as
fractions are really whole numbers. The mathematics are not
the only branches of knowledge in which it is customary to
extend the meaning of established terms. Whenever we pass
from that which is simple to that which is complex, we shall
see the necessity of carrying our terms with us and enlarging
their meaning, as we enlarge our own ideas. This is the only
method of forming a language which shall approach in any
degree towards perfection; and more depends upon a well-



arithmetical fractions. 35

constructed language in mathematics than in anything else.
It is not that an imperfect language would deprive us of the
means of demonstration, or cramp the powers of reasoning.
The propositions of Euclid upon numbers are as rationally
established as any others, although his terms are deficient in
analogy, and his notation infinitely inferior to that which we
use. It is the progress of discovery which is checked by terms
constructed so as to conceal resemblances which exist, and
to prevent one result from pointing out another. The higher
branches of mathematics date the progress which they have
made in the last century and a half, from the time when the
genius of Newton, Leibnitz, Descartes, and Hariot turned
the attention of the scientific world to the imperfect mecha-
nism of the science. A slight and almost casual improvement,
made by Hariot in algebraical language, has been the founda-
tion of most important branches of the science.∗ The subject
of the last articles is of very great importance, and will of-
ten recur to us in explaining the difficulties of algebraical
notation.

The multiplication of 5
6

by 3
2

is equivalent to dividing 5
6

into 2 parts, and taking three such parts. Because 5
6

being
the same as 10

12
, or 1 divided into 12 parts and 10 of them

taken, the half of 10
12

is 5 of those parts, or 5
12

. Three times
this quantity will be 15 of those parts, or 15

12
, which is by our

rule the same as what we have called, 5
6

multiplied by 3
2
. But

∗The mathematician will be aware that I allude to writing an equa-
tion in the form x2 + ax− b = 0; instead of x2 + ax = b.
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the same result arises from multiplying 3
2

by 5
6
, or dividing 3

2

into 6 parts and taking 5 of them. Therefore, we find that
3
2

multiplied by 5
6

is the same as 5
6

multiplied by 3
2
, or 3

2
× 5

6
=

5
6
× 3

2
. This proposition is usually considered as requiring no

proof, because it is received very early on the authority of a
rule in the elements of arithmetic. But it is not self-evident,
for the truth of which we appeal to the beginner himself,
and ask him whether he would have seen at once that 5

6
of

an apple divided into 2 parts and 3 of them taken, is the
same as 3

2
of an apple, or one apple and a-half divided into

six parts and 5 of them taken.
An extension of the same sort is made of the term divi-

sion. In dividing one whole number by another, for example,
12 by 2, we endeavor to find how many twos must be added
together to make 12. In passing from a problem which con-
tains these whole numbers to one which contains fractional
quantities, for example 3

4
and 2

5
, it will be observed that in

place of finding how many twos make 12, we shall have to
find into how many parts 2

5
must be divided, and how many

of them must be taken, so as to give 3
4
. If we reduce these

fractions to a common denominator, in which case they will
be 15

20
and 8

20
; and if we divide the second into 8 equal parts,

each of which will be 1
20

, and take 15 of these parts, we shall
get 15

20
, or 3

4
. The fraction whose numerator is 15, and whose

denominator is 8, or 15
8

, will in these problems take the place
of the quotient of the two whole numbers. In the same man-
ner as before, it may be shown that this process is equivalent
to the division of one whole number by another, whenever
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the fractions are really whole numbers; for example, 3 is 12
4

,
and 15 is 30

2
. If this process be applied to 30

2
and 12

4
, the

result is 120
24

, which is 5, or the same as 15 divided by 3. This
process is then, by extension, called division: 15

8
is called

the quotient of 3
4

divided by 2
5
, and is found by multiplying

the numerator of the first by the denominator of the second
for the numerator of the result, and the denominator of the
first by the numerator of the second for the denominator of
the result. That this process does give the same result as
ordinary division in all cases where ordinary division is ap-
plicable, we can easily show from any two whole numbers,
for example, 12 and 2, whose quotient is 6. Now 12 is 36

3
,

and 2 is 10
5

, and the rule for what we have called division of
fractions will give as the quotient 180

30
, which is 6.

In all fractional investigations, when the beginner meets
with a difficulty, he should accustom himself to leave the no-
tation of fractions, and betake himself to their original def-
inition. He should recollect that 5

6
is 1 divided into 6 parts

and five of them taken, or the sixth part of 5, and he should
reason upon these suppositions, neglecting all rules until he
has established them in his own mind by reflexion on par-
ticular instances. These instances should not contain large
numbers, and it will perhaps assist him if he reasons on some
given unit, for example a foot. Let AB be one foot, and di-
vide it into any number of equal parts (7 for example) by
the points C, D, E, F , G, and H. He must then recollect
that each of these parts is 1

7
of a foot; that any two of them

together are 2
7

of a foot; any 3, 3
7
, and so on. He should
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then accustom himself, without a rule, to solve such ques-
tions as the following, by observation of the figure, dividing
each part into several equal parts, if necessary; and he may
be well assured that he does not understand the nature of
fractions until such questions are easy to him.

What is 1
4

of 2
7

of a foot? What is 2
5

of 1
3

of 3
4

of a foot?
Into how many parts must 3

7
of a foot be divided, and how

many of them must be taken to produce 14
15

of a foot? What
is 1

3
+ 1

7
of a foot? and so on.



CHAPTER V.

DECIMAL FRACTIONS.

It is a disadvantage attending rules received without a
knowledge of principles, that a mere difference of language
is enough to create a notion in the mind of a student that he
is upon a totally different subject. Very few beginners see
that in following the rule usually called practice, they are
working the same questions as were proposed in compound
multiplication;—that the rule of three is only an application
of the doctrine of fractions; that the rules known by the
name of commission, brokerage, interest, etc., are the same,
and so on. No instance, however, is more conspicuous than
that of decimal fractions, which are made to form a branch
of arithmetic as distinct from ordinary or vulgar fractions
as any two parts of the subject whatever. Nevertheless,
there is no single rule in the one which is not substantially
the same as the rule corresponding in the other, the differ-
ence consisting altogether in a different way of writing the
fractions. The beginner will observe that throughout the
subject it is continually necessary to reduce fractions to a
common denominator: he will see, therefore, the advantage
of always using either the same denominator, or a set of
denominators, so closely connected as to be very easily
reducible to one another. Now of all numbers which can be
chosen the most easily manageable are 10, 100, 1000, etc.,
which are called decimal numbers on account of their con-
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nexion with the number ten. All fractions, such as 75
100

, 333
1000

,
178699

10
, which have a decimal number for the denominator,

are called decimal fractions. Now a denominator of this
sort is known whenever the number of cyphers in it are
known; thus a decimal number with 4 cyphers can only
be 10,000, or ten thousand. We need not, therefore, write
the denominator, provided, in its stead, we put some mark
upon the numerator, by which we may know the number
of cyphers in the denominator. This mark is for our own
selection. The method which is followed is to point off
from the numerator as many figures as there are cyphers in
the denominator. Thus 17334

1000
is represented by 17.334; 229

1000

thus, .229. We might, had we so pleased, have represented
them thus, 173343, 2293; or thus, 173343, 2293, or in any
way by which we might choose to agree to recollect that
the denominator is 1 followed by 3 cyphers. In the common
method this difficulty occurs immediately. What shall be
done when there are not as many figures in the numerator
as there are cyphers in the denominator? How shall we
represent 88

10000
? We must here extend our language a little,

and imagine some method by which, without essentially
altering the numerator, it may be made to show the number
of cyphers in the denominator. Something of the sort has
already been done in representing a number of tens, hun-
dreds, or thousands, etc.; for 5 thousands were represented
by 5000, in which, by the assistance of cyphers, the 5 is
made to stand in the place allotted to thousands. If, in the
present instance, we place cyphers at the beginning of the
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numerator, until the number of figures and cyphers together
is equal to the number of cyphers in the denominator, and
place a point before the first cypher, the fraction 88

10000
will be

represented thus, .0088; by which we understand a fraction
whose numerator is 88, and whose denominator is a decimal
number containing four cyphers.

There is a close connexion between the manner of repre-
senting decimal fractions, and the decimal notation for num-
bers. Take, for example, the fraction 217.3426 or 2173426

10000
. You

will recollect that 2173426 is made up of 2000000+100000+
70000+3000+400+20+6. If each of these parts be divided
by 10000, and the quotient obtained or the fraction reduced
to its lowest terms, the result is as follows:

2173426

10000
= 200 + 10 + 7 +

3

10
+

4

100
+

2

1000
+

6

10000
.

We see, then, that in the fraction 217.3426 the first figure 2
counts two hundred; the second figure, 1, ten, and the third
7 units. It appears, then, that all figures on the left of the
decimal point are reckoned as ordinary numbers. But on
the right of that point we find the figure 3, which counts
for 3

10
; 4, which counts for 4

100
; 2, for 2

1000
; and 6, for 6

10000
. It

appears therefore, that numbers on the right of the decimal
point decrease as they move towards the right, each number
being one-tenth of what it would have been had it come one
place nearer to the decimal point. The first figure on the
right hand of that point is so many tenths of a unit, the
second figure so many hundredths of a unit, and so on.
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The learner should go through the same investigation
with other fractions, and should demonstrate by means of the
principles of fractions, generally, such exercises as the follow-
ing, until he is thoroughly accustomed to this new method
of writing fractions:

.68342 = .6 + .08 + .003 + .0004 + .00002,

or
68342

100000
=

6

10
+

8

100
+

3

1000
+

4

10000
+

2

100000
,

.00012 = .0001 + .00002 =
1

10000
+

2

100000
,

163.499 =
163429

1000
= 163

429

1000

=
1634

10
+

29

1000
=

16342

100
+

9

1000
, etc.

The rules of addition, subtraction, and multiplication
may now be understood. In addition and subtraction, the
keeping the decimal points under one another is equivalent
to reducing the fractions to a common denominator, as we
may show thus: Take two fractions, 1.5 and 2.125, or 15

10
and

2125
1000

, which, reducing the first to the denominator of the sec-
ond, may be written 1500

1000
and 2125

1000
. If we add the numerators

together, we find the sum of the fractions 3625
1000

, or 3.625

2125
1500

3625

2.125
1.5

3.625

The learner can now see the connexion of the rule given
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for the addition of decimal fractions with that for the ad-
dition of vulgar fractions. There is the same connexion be-
tween the rules of subtraction. The principle of the rule of
multiplication is as follows: If two decimal numbers be mul-
tiplied together, the product has as many cyphers as are in
both together. Thus 100× 1000 = 100000, 10× 100 = 1000,
etc. Therefore the denominator of the product, which is the
product of the denominators, has as many cyphers as are in
the denominators of both fractions, and since the numerator
of the product is the product of the numerators, the point
must be placed in that product so as to cut off as many deci-
mal places as are both in the multiplier and the multiplicand.
Thus:

13

100
× 12

10
=

156

1000
, or .13× 1.2 = .156;

4

1000
× 6

100
=

24

100000
,

or .004× .06 = .00024, etc.

It is a general rule, that wherever the number of figures falls
short of what we know ought to be the number of decimals,
the deficiency is made up by cyphers.

It may now be asked, whether all fractions can be reduced
to decimal fractions? It may be answered that they can-
not. It is a principle which is demonstrated in the science of
algebra,—that if a number be not divisible by a prime num-
ber, no multiplication of that number, by itself, will make it
so. Thus 10 not being divisible by 7, neither 10 × 10, nor
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10 × 10 × 10, etc., is divisible by 7. A consequence of this
is, that since 5 and 2 are the only prime numbers which will
divide 10, no fraction can be converted into a decimal unless
its denominator is made up of products, either of 5 or 2, or
of both combined, such as 5× 2, 5× 5× 2, 5× 5× 5, 2× 2,
etc. To show that this is the case, take any fraction with

such a denominator; for example,
13

5× 5× 5
. Multiply the

numerator and denominator by 2, once for every 5, which
is contained in the denominator, and the fraction will then
become

13× 2× 2× 2

5× 5× 5× 2× 2× 2
, or

2× 2× 2× 13

10× 10× 10
,

which is 140
1000

, or .104. In a similar way, any fraction whose
denominator has no other factors than 2 or 5, can be reduced
to a decimal fraction. We first search for such a number as
will, when multiplied by the denominator, produce a decimal
number, and then multiply both the numerator and denom-
inator by that number.

No fraction which has any other factor in its denomina-
tor can be reduced to a decimal fraction exactly. But here it
must be observed that in most parts of mathematical compu-
tation a very small error is not material. In different species
of calculations, more or less exactness may be required; but
even in the most delicate operations, there is always a limit
beyond which accuracy is useless, because it cannot be ap-
preciated. For example, in measuring land for sale, an error
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of an inch in five hundred yards is not worth avoiding, since
even if such an error were committed, it would not make a
difference which would be considered as of any consequence,
as in all probability the expense of a more accurate measure-
ment would be more than the small quantity of land thereby
saved would be worth. But in the measurement of a line for
the commencement of a trigonometrical survey, an error of
an inch in five hundred yards would be fatal, because the sub-
sequent processes involve calculations of such a nature that
this error would be multiplied, and cause a considerable error
in the final result. Still, even in this case, it would be use-
less to endeavor to avoid an error of one-thousandth part of
an inch in five hundred yards; first, because no instruments
hitherto made would show such an error: and secondly, be-
cause if they could, no material difference would be made in
the result by a correction of it. Again, we know that almost
all bodies are lengthened in all directions by heat. For ex-
ample: A brass ruler which is a foot in length to-day, while
it is cold, will be more than a foot to-morrow if it is warm.
The difference, nevertheless, is scarcely, if at all, perceptible
to the naked eye, and it would be absurd for a carpenter, in
measuring a few feet of mahogany for a table, to attempt to
take notice of it; but in the measurement of the base of a
survey, which is several miles in length and takes many days
to perform, it is necessary to take this variation into account,
as a want of attention to it may produce perceptible errors in
the result: nevertheless, any error which has not this effect,
it would be useless to avoid even were it possible. We see,
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therefore, that we may, instead of a fraction, which cannot
be reduced to a decimal, substitute a decimal fraction, if we
can find one so near to the former, that the error committed
by the substitution will not materially affect the result. We
will now proceed to show how to find a series of decimal frac-
tions, which approach nearer and nearer to a given fraction,
and also that, in this approximation, we may approach as
near as we please to the given fraction without ever being
exactly able to reach it.

Take, for example,, the fraction 7
11

. If we divide the series
of numbers 70, 700, 7000, etc., by 11, we shall obtain the
following results:

70
11

gives the quotient 6, and the remainder 4, and is 6 4
11
,

700
11

“ 63 “ 7 63 7
11
,

7000
11

“ 636 “ 4 636 4
11
,

70000
11

“ 6363 “ 7 6363 7
11
,

etc., etc., etc.

Now observe that if two numbers do not differ by so much
as 1, their tenth parts do not differ by so much as 1

10
, their

hundredth parts by so much as 1
100

, their thousandth parts
by so much as 1

1000
, and so on; and also remember that 7

11
is

the tenth part of 70
11

, the hundredth part of 700
11

, and so on.
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The two following tables will now be apparent:

70
11

does not differ from 6 by so much as 1,
700
11

“ 63 “ 1,
7000
11

“ 636 “ 1,
70000
11

“ 6363 “ 1,

etc., etc., etc.

Therefore

7
11

does not differ from 6
10

or .6, by so much as 1
10

or .1,
7
11

“ 63
100

“ .63 “ 1
100

“ .01,
7
11

“ 636
1000

“ .636 “ 1
1000

“ .001,
7
11

“ 6363
10000

“ .6363 “ 1
10000

“ .0001,

etc., etc., etc.

We have then a series of decimal fractions, viz., .6, .63, .636,
.6363, .63636, etc., which continually approach more and
more near to 7

11
, and therefore in any calculation in which

the fraction 7
11

appears, any one of these may be substituted
for it, which is sufficiently near to suit the purpose for which
the calculation is intended. For some purposes .636 would
be a sufficient approximation; for others .63636363 would
be necessary. Nothing but practice can show how far the
approximation should be carried in each case.

The division of one decimal fraction by another is
performed as follows: Suppose it required to divide 6.42
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by 1.213. The first of these is 642
100

, and the second 1233
1000

. The
quotient of these by the ordinary rule is 642000

121300
, or 6420

1213
. This

fraction must now be reduced to a decimal on the principles
of the last article, by the rule usually given, either exactly,
or by approximation, according to the nature of the factors
in the denominator.

When the decimal fraction corresponding to a common
fraction cannot be exactly found, it always happens that
the series of decimals which approximates to it, contains the
same number repeated again and again. Thus, in the exam-
ple which we chose, 7

11
is more and more nearly represented

by the fractions .6, .63, .636, .6363, etc., and if we carried
the process on without end, we should find a decimal frac-
tion consisting entirely of repetitions of the figures 63 after
the decimal point. Thus, in finding 1

7
, the figures which are

repeated in the numerator are 142857. This is what is com-
monly called a circulating decimal, and rules are given in
books of arithmetic for reducing them to common fractions.
We would recommend to the beginner to omit all notice of
these fractions, as they are of no practical use, and cannot be
thoroughly understood without some knowledge of algebra.
It is sufficient for the student to know that he can always
either reduce a common fraction to a decimal, or find a deci-
mal near enough to it for his purpose, though the calculation
in which he is engaged requires a degree of accuracy which
the finest microscope will not appreciate. But in using ap-
proximate decimals there is one remark of importance, the
necessity for which occurs continually.
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Suppose that the fraction 2.143876 has been obtained,
and that it is more than sufficiently accurate for the calcu-
lation in which it is to be employed. Suppose that for the
object proposed it is enough that each quantity employed
should be a decimal fraction of three places only, the quan-
tity 2.143876 is made up of 2.143, as far as three places of
decimals are concerned, which at first sight might appear to
be what we ought to use, instead of 2.143876. But this is not
the number which will in this case give the utmost accuracy
which three places of decimals will admit of; the common
usages of life will guide us in this case. Suppose a regiment
consists of 876 men, we should express this in what we call
round numbers, which in this case would be done by saying
how many hundred men there are, leaving out of considera-
tion the number 76, which is not so great as 100; but in doing
this we shall be nearer the truth if we say that the regiment
consists of 900 men instead of 800, because 900 is nearer
to 876 than 800. In the same manner, it will be nearer the
truth to write 2.144 instead of 2.143, if we wish to express
2.143876 as nearly as possible by three places of decimals,
since it will be found by subtraction that the first of these is
nearer to the third than the second. Had the fraction been
2.14326, it would have been best expressed in three places
by 2.143; had it been 2.1435, it would have been equally
well expressed either by 2.143 or 2.144, both being equally
near the truth; but 2.14351 is a little more nearly expressed
by 2.144 than by 2.143.

We have now gone through the leading principles of arith-
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metical calculation, considered as a part of general Mathe-
matics. With respect to the commercial rules, usually con-
sidered as the grand object of an arithmetical education, it
is not within the scope of this treatise to enter upon their
consideration. The mathematical student, if he is sufficiently
well versed in their routine for the purposes of common life,
may postpone their consideration until he shall have become
familiar with algebraical operations, when he will find no dif-
ficulty in understanding the principles or practice of any of
them. He should, before commencing the study of algebra,
carefully review what he has learnt in arithmetic, particu-
larly the reasonings which he has met with, and the use of
the signs which have been introduced. Algebra is at first
only arithmetic under another name, and with more general
symbols, nor will any reasoning be presented to the student
which he has not already met with in establishing the rules of
arithmetic. His progress in the former science depends most
materially, if not altogether, upon the manner in which he
has attended to the latter; on which account the detail into
which we have entered on some things which to an intel-
ligent person are almost self-evident, must not be deemed
superfluous.

When the student is well acquainted with the principles
and practice of arithmetic, and not before, he should com-
mence the study of algebra. It is usual to begin algebra and
geometry together, and if the student has sufficient time, it
is the best plan which he can adopt. Indeed, we see no rea-
son why the elements of geometry should not precede those
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of algebra, and be studied together with arithmetic. In this
case the student should read some treatise which relates to
geometry, first. It is hardly necessary to say that though
we have adopted one particular order, yet the student may
reverse or alter that order so as to suit the arrangement of
his own studies.

We now proceed to the first principles of algebra, and the
elucidation of the difficulties which are found from experience
to be most perplexing to the beginner. We suppose him to
be well acquainted with what has been previously laid down
in this treatise, particularly with the meaning of the signs
+, −, ×, and the sign of division.



CHAPTER VI.

ALGEBRAICAL NOTATION AND PRINCIPLES.

Whenever any idea is constantly recurring, the best thing
which can be done for the perfection of language, and con-
sequent advancement of knowledge, is to shorten as much as
possible the sign which is used to stand for that idea. All
that we have accomplished hitherto has been owing to the
short and expressive language which we have used to repre-
sent numbers, and the operations which are performed upon
them. The first step was to write simple signs for the first
numbers, instead of words at full length, such as 8 and 7, in-
stead of eight and seven. The next was to give these signs an
additional meaning, according to the manner in which they
were connected with one another; thus 187 was made to rep-
resent one hundred added to eight tens added to seven. The
next was to give by new signs directions when to perform
the operations of addition, subtraction, multiplication, and
division; thus 5 + 8 was made to represent 8 added to 5, and
so on. With these signs reasonings were made, and truths
discovered which are common to all numbers; not at once
for every number, but by taking some example, by reason-
ing upon it, and by producing a result; this result led to
a rule which was declared to be a rule which held equally
good for all numbers, because the reasoning which produced
it might have been applied to any other example as well as
to the one which was chosen. In this way we produced some
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results, and might have produced many more; the following
is an instance: half the sum of two numbers added to half
their difference, gives the greater of the two numbers. For
example, take 16 and 10, half their sum is 13, half their dif-
ference is 3; if we add 13 and 3 we get 16, the greater of the
two numbers. We might satisfy ourselves of the truth of this
same proposition for any other numbers, such as 27 and 8,
15 and 19, and so on. If we then make use of signs, we find
the following truths:

16 + 10

2
+

16− 10

2
= 16,

27 + 8

2
+

27− 8

2
= 27,

15 + 9

2
+

15− 9

2
= 15,

and so on. If, then, we choose any two numbers, and call
them the first and second numbers, and call that the first
number which is the greater of the two, we have the following:

First No. + Second No.

2
+

First No.− Second No.

2
= First No.

In this way we might express anything which is true of all
numbers, by writing First No., Second No., etc., for the
different numbers which enter into our proposition, and we
might afterwards suppose the First No., the Second No., etc.,
to be any which we please. In this way we might write down
the following assertion, which we should find to be always



on the study of mathematics. 54

true:

(First No. + Second No.)× (First No.− Second No.)

= First No.× First No.− Second No.× Second No.

When any sentence expresses that two numbers or col-
lections of numbers are equal to one another, it is called an
equation∗ thus 7 + 5 = 12 is an equation, and the sentences
written just above are equations.

Now the next question is, could we not avoid the trouble
of writing First No., Second No., etc., so frequently? This
is done by putting letters of the alphabet to stand for these
numbers. Suppose, e. g., we let x stand for the first number,
and y for the second, the two assertions already made will
then be written:

x+ y

2
+
x− y

2
= x,

(x+ y)× (x− y) = x× x− y × y.

By the use of letters we are thus enabled to write sen-
tences which say something of all numbers, with a very small
part only of the time and trouble necessary for writing the
same thing at full length. We now proceed to enumerate the
various symbols which are used.

1. The letters of the alphabet are used to stand for num-
bers, and whenever a letter is used it means either that any

∗As now usually defined an equation always contains an unknown
quantity. See also p. 90.—Ed.
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number may be used instead of that letter, or that the num-
ber which the letter stands for is not known, and that the
letter supplies its place in all the reasonings until it is known.

2. The sign + is used for addition, as in arithmetic. Thus
x+z is the sum of the numbers represented by x and z. The
following equations are sufficiently evident:

x+ y + z = x+ z + y = y + z + x.

If a = b, then a+ c = b+ c, a+ c+ d = b+ c+ d, etc.

3. The sign − is used for subtraction, as in arithmetic.
The following equations will show its use:

x+ a− b− c+ e = x+ a+ e− b− c
= a− c+ e− b+ x.

If a = b, then a− c = b− c, a− c+ d = b− c+ d, etc.

4. The sign × is used for multiplication as in arithmetic,
but when two numbers represented by letters are multiplied
together it is useless, since a×b can be represented by putting
a and b together thus, ab. Also a×b×c is represented by abc;
a× a× a, for the present we represent thus, aaa. When two
numbers are multiplied together, it is necessary to keep the
sign ×; otherwise 7×5 or 35 would be mistaken for 75. It is,
however, usual to place a point between two numbers which
are to be multiplied together; thus 7×5×3 is written 7 ·5 ·3.
But this point may sometimes be mistaken for the decimal
point: this will, however, be avoided by always writing the
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decimal point at the head of the figure, viz., by writing 23461
100

thus, 234
.
61.

5. Division is written as in arithmetic: thus,
a

b
signifies

that the number represented by a is to be divided by the
number represented by b.

6. All collections of numbers are called expressions; thus,
a+ b, a+ b− c, aa+ bb− d, are algebraical expressions.

7. When two expressions are to be multiplied together, it
is indicated by placing them side by side, and inclosing each
of them in brackets. Thus, if a + b + c is to be multiplied
by d + e + f , the product is written in any of the following
ways:

(a+ b+ c)(d+ e+ f),

[a+ b+ c][d+ e+ f ],

{a+ b+ c}{d+ e+ f},
a+ b+ c · d+ e+ f.

8. That a is greater than b is written thus, a > b.
9. That a is less than b is written thus, a < b.
10. When there is a product in which all the factors

are the same, such as xxxxx, which means that five equal
numbers, each of which is represented by x, are multiplied
together, the letter is only written once, and above it is writ-
ten the number of times which it occurs, thus xxxxx is writ-
ten x5. The following table should be carefully studied by
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the student:

x× x or xx is written x2,

and is called the square, or second power of x,

x× x× x or xxx is written x3,

and is called the cube, or third power of x,

x× x× x× x or xxxx is written x4,

and is called the fourth power of x,

x× x× x× x× x or xxxxx is written x5,

and is called the fifth power of x,

etc., etc., etc.

There is no point which is so likely to create confusion
in the ideas of a beginner as the likeness between such ex-
pressions as 4x and x4. On this account it would be better
for him to omit using the latter expression, and to put xxxx
in its place until he has acquired some little facility in the
operations of algebra. If he does not pursue this course, he
must recollect that the 4, in these two expressions, has dif-
ferent names and meanings. In 4x it is called a coefficient,
in x4 an exponent or index.

The difference of meaning will be apparent from the fol-
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lowing tables:

2x = x+ x x2 = x× x = xx,

3x = x+ x+ x x3 = x× x× x or xxx,

4x = x+ x+ x+ x x4 = x× x× x× x or xxxx,

etc., etc.

If x = 3, 2x = 6, x2 = 9,

3x = 9, x3 = 27,

4x = 12, x4 = 81.

The beginner should frequently write for himself such
expressions as the following:

4a3b2 = aaabb+ aaabb+ aaabb+ aaabb,

5a4x = aaaax+ aaaax+ aaaax+ aaaax+ aaaax,

9a2b3 + 4ab4 = 9aabbb+ 4abbbb,

a2 + b2

a2 − b2
=
aa+ bb

aa− bb
=

aa

aa− bb
+

bb

aa− bb

=
aa− cc
aa− bb

+
bb+ cc

aa− bb
,

a3 − b3

a2 − b2
=
aaa− bbb
aa− bb

=
aa+ ab+ bb

a+ b
.

With many such expressions every book on algebra will fur-
nish him, and he should then satisfy himself of their truth
by putting some numbers at pleasure instead of the letters,
and making the results agree with one another. Thus, to try
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the expression

a3 − b3

a− b
= a2 + ab+ b2,

or, which is the same,

aaa− bbb
a− b

= a2 + ab+ b2.

Let a stand for 6 and b stand for 4, then, if this expression
be true,

6 · 6 · 6− 4 · 4 · 4
6− 4

= 6 · 6 + 6 · 4 + 4 · 4,

which is correct, since each of these expressions is found, by
calculation, to be 76.

The student should then exercise himself in the solution
of such questions as the following: What is

a2 + b2 − ab

a+ b
+

a

a+ b
− a,

I. when a stands for 6, and b for 5, II. when a stands for 13,
and b for 2, and so on. He should stop here until he has,
by these means, made the signs familiar to his eye and their
meaning to his mind; nor should he proceed to any further
algebraical operations until he can readily find the value of
any algebraical expression when he knows the numbers which
the letters stand for. He cannot, at this period of his course,
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write too many algebraical expressions, and he must partic-
ularly avoid slurring over the sense of what he has before
him, and must write and rewrite each expression until the
meaning of the several parts forces itself upon his memory at
first sight, without even the necessity of putting it in words.
It is the neglecting to do this which renders the operations
of algebra so tedious to the beginner. He usually proceeds
to the addition, subtraction, etc., of symbols, of the mean-
ing of which he has but an imperfect idea, and which have
been newly introduced to him in such numbers that perpet-
ual confusion is the consequence. We cannot, therefore, use
too many arguments to induce him not to mind the drudgery
of reducing algebraical expressions into figures. This is the
connecting link between the new science and arithmetic, and,
unless that link be well fastened, the knowledge which he has
previously acquired in arithmetic will help him but little in
acquiring algebra.

The order of the terms of any algebraical expression may
be changed without changing the value of that expression.
This needs no proof, and the following are examples of the
change:

a+ b+ ab+ c+ ac− d− e− de− f
= a− d+ b− e+ ab− de+ c− f + ac

= a+ b− d− e− de− f + ac+ c+ ab

= ab+ ac− de+ a+ b+ c− e− f − d.

When the first term changes its place, as in the fourth of
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these expressions, the sign + is put before it, and should,
properly speaking, be written wherever there is no sign, to
indicate that the term in question increases the result of
the rest, but it is usually omitted. The negative sign is often
written before the first term, as in the expression −a+b: but
it must be recollected that this is written on the supposition
that a is subtracted from what comes after it.

When an expression is written in brackets, with some
sign before it, such as a − (b − c), it is understood that the
expression in brackets is to be considered as one quantity,
and that its result or total is to be connected with the rest
by the sign which precedes the brackets. In this example it
is the difference of b and c which is to be subtracted from a.
If a = 12, b = 6, and c = 4, this is 10. In the expression a−b
made by subtracting b from a, too much has been subtracted
by the quantity c, since it is not b, but b− c, which must be
subtracted from a. In order, therefore, to make a− (b− c),
c must be added to a− b, which gives a− b + c. Therefore,
a− (b− c) = a− b+ c. Similarly

a+ b− (c+ d− e− f) = a+ b− c− d+ e+ f,

(ax2 − bx+ c)− (dx2 − ex+ f)

= ax2 − bx+ c− dx2 + ex− f.

When the positive sign is written before an expression in
brackets, the brackets may be omitted altogether, unless they
serve to show that the expression in question is multiplied
by some other. Thus, instead of (a+ b+ c) + (d+ e+ f), we
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may write a+ b+ c+ d+ e+ f , which is, in fact, only saying
that two wholes may be added together by adding together
all the parts of which they are composed. But the expression
a+(b+c)(d+e) must not be written thus: a+b+c(d+e), since
the first expresses that (b+ c) must be multiplied by (d+ e)
and the product added to a, and the second that c must be
multiplied by (d+ e) and the product added to a+ b. If a, b,
c, d, and e, stand for 1, 2, 3, 4, and 5, the first is 46 and the
second 30.

When two or more quantities have exactly the same
letters repeated the same number of times, such as 4a2b3,
and 6a2b3, they may be reduced into one by merely adding
the coefficients and retaining the same letters. Thus, 2a+3a
is 5a, 6bc − 4bc is 2bc, 3(x + y) + 2(x + y) is 5(x + y).
These things are evident, but beginners are very liable to
carry this farther than they ought, and to attempt to reduce
expressions which do not admit of reduction. For example,
they will say that 3b+2 is 4b or 4b2, neither of which is true,
except when b stands for 1. The expression 3b+b2, or 3b+bb,
cannot be made more simple until we know what b stands
for. The following table will, perhaps, be of service:

6a2b3 + 3a3b2 is not 9a5b5,

6a3 − 4a2 is not 2a,

2ba+ 3b is not 5ab.

Such are the mistakes which beginners almost universally
make, mostly for want of a moment’s consideration. They
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attempt to reduce quantities which cannot be reduced, which
they do by adding the exponents of letters as well as their
coefficients, or by collecting several terms into one, and leav-
ing out the signs of addition and subtraction. The beginner
cannot too often repeat to himself that two terms can never
be made into one, unless both have the same letters, each
letter being repeated the same number of times in both, that
is, having the same index in both. When this is the case, the
expressions may be reduced by adding or subtracting the
coefficients according to the sign, and affixing the common
letters with their indices. When there is no coefficient, as
in the expression a2b, the quantity represented by a2b being
only taken once, 1 is called the coefficient. Thus,

3ab+ 4ab+ 6ab− ab− 7ab = 5ab,

6xy2 + 3xy2 − 5xy2 + xy2 = 5xy2.

The student must also recollect that he is not at liberty to
change an index from one letter to another, as by so doing
he changes the quantity represented. Thus a4b and ab4 are
quantities totally distinct, the first representing aaaab and
the second abbbb. The difference in all the cases which we
have mentioned will be made more clear, by placing numbers
at pleasure instead of letters in the expressions, and calcu-
lating their values; but, in conclusion, the following remark
must be attended to. If it were asserted that the expression
a2 + b2

a+ b
is the same as a+b− 2ab

2a− b
, and we wish to proceed

to see whether this is always the case or no, if we commence
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accidentally by supposing b to stand for 2 and a for 4, we
shall find that the first is the same as the second, each be-
ing 31

2
. But we must not conclude from this that they are

always the same, at least until we have tried whether they
are so, when other numbers are substituted for a and b. If we
place 6 and 8 instead of a and b, we shall find that the two
expressions are not equal, and therefore we must conclude
that they are not always the same. Thus in the expressions
3x− 4 and 2x+ 8, if x stand for 12, these are the same, but
if it stands for any other number they are not the same.



CHAPTER VII.

ELEMENTARY RULES OF ALGEBRA.

The student should be very well acquainted with the prin-
ciples and notation hitherto laid down before he proceeds to
the algebraical rules for addition and subtraction. He should
then take some simple examples of each, and proceed to find
the sum and difference by reasoning as follows. Suppose it
is required to add c − d to a − b. The direction to do this
may either be written in the common way thus:

a− b
c− d

Add

or more properly thus: Find (a− b) + (c− d).
If we add c to a, or find a + c, we have too much; first,

because it is not a which is to be increased by c − d but
a− b; this quantity must therefore be decreased by b on this
account, or must become a+ c− b; but this is still too great,
because it is not c which was to be added but c− d; it must
therefore be decreased by d on this account, or must become
a+ c− b− d or a− b+ c− d. From a few reasonings of this
sort the rule may be deduced; and not till then should an
example be chosen so complicated as to make the student
lose sight for one moment of his demonstration. The process
of subtraction we have already performed, and from a few
examples of this method the rule may be deduced.
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The multiplication of a by c − d is performed thus: a is
to be taken c− d times. Take it first c times or find ac. This
is too great, because a has been taken too many times by d.
From ac we must therefore subtract d times a, or ad, and
the result is that

a(c− d) = ac− ad.

This may be verified from arithmetic, in which the same
process is shown to be correct; and this whether the numbers
a, c, and d are whole or fractional. For example, it will be
found that 6(14− 9) or 6× 5 is the same as 6× 14− 6× 9,
or as 84 − 54. Also that 2

3
(1
7
− 2

15
), or 2

3
× 1

105
is the same

as 2
3
× 1

7
− 2

3
× 2

15
, or as 2

21
− 4

45
. Upon similar reasoning the

following equations may be proved:

a(b+ c− d) = ab+ ac− ad,
(p+ pq − ar)xz = pxz + pqxz − arxz,

(a2 + 2b2)b2, or (aa+ 2bb)bb = aabb+ 2bbbb = a2b2 + 2b4.

Also when a multiplication has been performed, the process
may be reversed and the factors of it may be given. Thus,
on observing the expression

ab− ac+ a2,

or ab− ac+ aa,

we see that in its formation every term has been multiplied
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by a; that is, it has been made by multiplying

b− c+ a by a,

or a by b− c+ a.

There will now be no difficulty in perceiving that

ac+ ad+ bc+ bd = a(c+ d) + b(c+ d)

= (a+ b)(c+ d),

a2 − ab2 + 2abc− dc+ 3a = a(a− b2 + 3) + c(2ba− d).

It is proved in arithmetic that if numbers, whether whole or
fractional, are multiplied together, the product remains the
same when the order in which they are multiplied is changed.
Thus 6×4×3 = 3×6×4 = 4×6×3, etc., and 2

3
× 4

5
= 4

5
× 2

3
,

etc. Also, that a part of the multiplication may be made, and
the partial product substituted instead of the factors which
produced it, thus, 3×4×5×6 is 12×5×6, or 15×4×6, or
90 × 4. From these rules two complicated single terms may
be multiplied together, and the product represented in the
most simple manner which the case admits of. Thus if it be
required to multiply

6a3b4c, which is 6 aaa bbbb c

by 12a2b3c3d, which is 12 aa bbb ccc d,

the product is written thus:

6 aaa bbbb c 12 aa bbb ccc d,
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which multiplication may be performed in the following order

6× 12 aaaaa bbbbbbb cccc d,

which is represented by 72a5b7c4d. A few examples of this
sort will establish the rule for the multiplication of such
quantities which is usually given in the treatises on Alge-
bra.

It is to be recollected that in every algebraical formula
which is true of all numbers, any algebraical expression may
be substituted for one of the letters, provided care is taken
to make the substitution wherever that letter occurs. Thus
from the formula:

a2 − b2 = (a+ b)(a− b)

we may deduce the following by making substitutions for a.
If this formula be always true, it is true when a is equal
to p+q, that is, it is true if p+q be put instead of a wherever
that letter occurs in the formula. Therefore,

(p+ q)2 − b2 = (p+ q + b)(p+ q − b).

Similarly,

(b+m)2 − b2 = (2b+m)m,

(x+ y)2 − (x− y)2 = (x+ y + x− y)(x+ y − x− y) = 4xy,

and so on.
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We have already established the formula,

(p− q)a = ap− aq.

Instead of a let us put r − s, and this formula becomes

(p− q)(r − s) = (r − s)p− (r − s)q.

But

(r − s)p = pr − ps, and (r − s)q = qr − qs.

Therefore

(p− q)(r − s) = pr − ps− (qr − qs)
= pr − ps− qr + qs.

By reasoning in the same way we may prove that

(p− q)(r + s) = pr + ps− qr − qs.

A few examples of this sort will establish what is called
the rule of signs in multiplication; viz., that a term of the
multiplicand multiplied by a term of the multiplier has the
sign + before it if the terms have the same sign, and − if they
have different signs. But here the student must avoid using
an incorrect mode of expression, which is very common, viz.,
the saying that + multiplied by + gives +; −multiplied by +
gives −; and so on. He must recollect that the signs + and −
are not quantities, but directions to add and subtract, and
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that, as has been well said by one of the most luminous
writers on algebra in our language, we might as well say,
that take away multiplied by take away gives add, as that
− multiplied by − gives +.∗

The only way in which the student should accustom him-
self to state this rule is the following: “In multiplying two al-
gebraical expressions, multiply each term of the one by each
term of the other, and wherever two terms are preceded by
the same sign put + before the product of the two; when the
signs are different put the sign − before their product.”

If the student should meet with an equation in which
positive and negative signs stand by themselves, such as

+ab×−c = −abc,

let him, for the present, reject the example in which it oc-
curs, and defer the consideration of such equations until he
has read the explanation of them to which we shall soon
come. Above all, he must reject the definition still some-
times given of the quantity −a, that it is less than nothing.
It is astonishing that the human intellect should ever have
tolerated such an absurdity as the idea of a quantity less than
nothing;† above all, that the notion should have outlived the

∗Frend, Principles of Algebra. The author of this treatise is far
from agreeing with the work which he has quoted in the rejection of the
isolated negative sign which prevails throughout it, but fully concurs
in what is there said of the methods then in use for explaining the
difficulties of the negative sign.

†For a full critical and historical discussion of this point, see
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belief in judicial astrology and the existence of witches, ei-
ther of which is ten thousand times more possible.

These remarks do not apply to such an expression as
−b+a, which we sometimes write instead of a−b, as long as
it is recollected that the one is merely used to stand for the
other, and for the present a must be considered as greater
than b.

In writing algebraical expressions, we have seen that var-
ious arrangements may be adopted. Thus ax2 − bx+ c may
be written as c+ ax2 − bx, or −bx+ c+ ax2. Of these three
the first is generally chosen, because the highest power of x
is written first; the highest but one comes next; and last of
all the term which contains no power of x. When written in
this way the expression is said to be arranged in descending
powers of x; had it been written thus, c− bx+ ax2, it would
have been arranged in ascending powers of x; in either case
it is said to be arranged in powers of x, which is called the
principal letter. It is usual to arrange all expressions which
occur in the same question in powers of the same letter,
and practice must dictate the most convenient arrangement.
Time and trouble is saved by this operation, as will be evi-
dent from multiplying two unarranged expressions together,
and afterwards doing the same with the same expressions
properly arranged.

In multiplying two arranged expressions together, while

Duhamel. Des méthodes dans les sciences de raisonnement, 2me partie,
chap. xix. (third edition, Paris, Gauthier-Villars, 1896).—Editor.
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collecting such terms into one as will admit of it, it will al-
ways be evident that the first and last of all the products
contain powers of the principal letter which are found in no
other part, and stand in the product unaltered by combina-
tion with any other terms, while in the intermediate products
there are often two or more which contain the same power of
the principal letter, and can be reduced into one. This will
be evident in the following examples:

Multiply x6 − 3x5 + x4

By x4 − 2x2 + x

The product is x10 − 3x9 + x8

− 2x8 + 6x7 − 2x6

+ x7 − 3x6 + x5

Or x10 − 3x9 − x8 + 7x7 − 5x6 + x5.

Multiply ax3 + bx2 + cx
By dx2 + ex + f

The product is adx5 + bdx4 + cdx3

+ aex4 + bex3 + cex2

+ afx3 + bfx2 + cfx

Or adx5 + (bd+ ae)x4

+ (cd+ be+ af)x3

+ (ce+ bf)x2

+ cfx.

It is plain from the rule of multiplication, that the high-
est power of x in a product must be formed by multiplying
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the highest power in one factor by the highest power in the
other, or when the two factors have been arranged in de-
scending powers, the first power in one by the first power in
the other. Also, that the lowest power of x, or should it so
happen, the term in which there is no power of x, is made by
multiplying the last terms in each factor. These being the
highest and lowest, there can be no other such power, conse-
quently neither of these terms can coalesce with any other,
as is the case in the intermediate products. This remark will
be of most convenient application in division, to which we
now come.

Division is in all respects the reverse of multiplication.
In dividing a by b we find the answer to this question: If
a be divided into b equal parts, what is the magnitude of
each of those parts? The quotient is, from the definition of

a fraction, the same as the fraction
a

b
, and all that remains

is to see whether that fraction can be represented by a sim-
ple algebraical expression without fractions or not; just as
in arithmetic the division of 200 by 26 is the reduction of
the fraction 200

26
to a whole number, if possible. But we must

here observe that a distinction must be drawn between alge-

braical and arithmetical fractions. For example,
a+ b

a− b
is an

algebraical fraction, that is, there is no expression without

fractions which is always equal to
a+ b

a− b
. But it does not

follow from this that the number which
a+ b

a− b
represents is
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always an arithmetical fraction; the contrary may be shown.

Let a stand for 12, and b for 6, then
a+ b

a− b
is 3. Again,

a2 +ab is a quantity which does not contain algebraical frac-
tions, but it by no means follows that it may not represent
an arithmetical fraction. To show that it may, let a = 1

2
and

b = 2, then a2 + ab = 11
4

or 5
4
. Other examples will clear up

this point if any doubt yet exist in the mind of the student.
Nevertheless, the following propositions of arithmetic and al-
gebra, which only differ in this, that “whole number” in the
arithmetical proposition is replaced by “simple expression”∗

in the algebraical one, connect the two subjects and ren-
der those demonstrations which are in arithmetic confined
to whole numbers, equally true in algebra as far as regards
simple expressions:

The sum, difference, or
product of two whole num-
bers, is a whole number.

The sum, difference, or
product of two simple expres-
sions is a simple expression.

One number is said to be
a measure of another when
the quotient of the two is a
whole number.

One expression is said
to be a measure of another
when the quotient of the two
is a simple expression.

∗By a simple expression is meant one which does not contain the
principal letter in the denominator of any fraction.
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The greatest common
measure of two whole num-
bers is the greatest whole
number which measures both,
and is the product of all the
prime numbers which will
measure both.

The greatest common
measure of two expressions is
the common measure which
has the highest exponents
and coefficients, and is the
product of all prime simple
expressions which measure
both.

When one number mea-
sures two others, it measures
their sum, difference, and
product.

When one expression
measures two others, it mea-
sures their sum, difference,
and product.

In the division of one
number by another, the
remainder is measured by
any number which measures
the dividend and divisor.

In the division of one
expression by another, the
remainder is measured by any
expression which measures
the dividend and divisor.

A fraction is not altered
by multiplying or divid-
ing both its numerator and
denominator by the same
quantity.

A fractional expression is
not altered by multiplying or
dividing both its numerator
and denominator by the same
expression.

In the term simple expression are included those quan-
tities which contain arithmetical fractions, provided there is
no algebraical quantity, or quantity represented by letters in
the denominator; thus 1

4
ab+ 1

2
is called a simple expression.

We now proceed to the division of one simple expression by
another, and we will take first the case where neither quan-
tity contains more than one term. For example, what is
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42a4b3c divided by 6a2bc? that is, what quantity must be
multiplied by 6a2bc, in order to produce 42a4b3c. This last
expression written at length, is 42 aaaa bbb c, and 42 is 6× 7.
We can then separate this expression into the product of
two others, one of which shall be 6a2bc, or 6aabc; it will
then be 6aabc× 7aabb, and it is 7aabb which must be multi-
plied by 6aabc in order to produce 42a4b3c. A few examples
worked in this way, will lead the student to the rule usually
given in all cases but one, to which we now come. We have
represented cc, ccc, cccc, etc., by c2, c3, c4, etc., and have
called them the second, third, fourth, etc., powers of c. The
extension of this rule would lead us to represent c by c1, and
call it the first power of c. Again, we have represented c+ c,
c+ c+ c, c+ c+ c+ c, etc. by 2c, 3c, 4c, and have called 2, 3,
4, etc., the coefficients of c. The extension of this rule would
lead us to write c thus, 1c, or, rather, if we attend to the last
remark, 1c1. This instance leads us to observe the gradual
progress of our language. We begin with the quantity c by
itself; we proceed in our course, shortening by new signs the
more complicated combinations of c, and the original quan-
tity c forces itself anew upon our attention as a part of the
series,

c, 2c, 3c, 4c, etc., and c, c2, c3, c4, etc.,

in each of which, except the first, there is a distinct figure,
which is called a coefficient or exponent, according to its sit-
uation. We then deduce rules in which the terms coefficient
or exponent occur, but which, of course, cannot apply to
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the first term in each series, because, as yet, it has neither
coefficient nor exponent. Among such rules are the following:

I. To add two terms of the first series, add the coefficients,
and affix to the sum the letter c. Thus 4c+ 3c = 7c.

II. To multiply two terms of the second series, add the
exponents, and make this sum the exponent of c. Thus
c4 × c3 = c7.

III. To divide a term of the second series by one which
comes before it, subtract the exponent of the divisor from
the exponent of the dividend, and make this difference the
exponent of c. Thus,

c7

c4
= c3.

These rules are intelligible for all terms of the series ex-
cept the first, to which, nevertheless, they will apply if we
agree that 1c1 shall represent c, as will be evident by applying

either of them to find 4c+c, c4×c, or
c4

c
. We therefore agree

that 1c1 shall stand for c, and although c is not written thus,
it must be remembered that c is to be considered as having
the coefficient 1 and the exponent 1, which is an amendment
and enlargement of our algebraical language, derived from
experience. It may be said that this is all superfluous, be-
cause, if c2 stand for cc, and c3 for ccc, what can c1 stand for
but c? But it must be recollected that, since the symbol c1

has not yet received a meaning, we are at liberty to make it

stand for anything which we please, for example, for
1 + c

c
,
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or c−c2, or any other. If we did this, there would, indeed, be
a great violation of analogy, that is, what c1 stands for would
not be as like that which c2 has been made to stand for, as
the meaning of c3 is to that of c4; but, nevertheless, we should
not be led to any incorrect results as long as we remembered
to make c1 always stand for the same thing. These remarks
are here introduced in order to show the manner in which
analogy is followed in extending the language of algebra, and
to prove that, after a certain period, we may rather be said
to discover new symbols than to make them. The immense
importance of this branch of the subject makes it necessary
that it should be fully and early understood by all who in-
tend to pursue their mathematical studies to any depth. To
illustrate it still further, we subjoin another instance, which
has not been noticed in its proper place.

The signs + and− were first used to connect one quantity
with others, and to show what arithmetical operations were
performed on other quantities by means of the first. But
the first quantity on which we begin the operation is not
preceded by any sign, not being considered as added to or
subtracted from any previous one. Rules were afterwards
deduced for the addition and subtraction of the total result
of several expressions in which these signs occur, as follows:

To add two expressions, form a third, which has all the
quantities in the first two, with the same signs.

To subtract one expression from another, change the sign
of each term of the subtrahend, and proceed as in the last
rule.
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The only terms in which these rules do not apply are
those which have no sign, viz., the first of each. But they
will apply to those terms, and will produce correct results, if
we place the sign + before each of them. We are thus led to
see that an algebraical term which has no sign is equivalent
in all operations to one which is preceded by the sign +.
We, therefore, consider this sign as prefixed, though it is not
always written, and thus we are furnished with a method of
containing under one rule that which would otherwise require
two.

From these considerations the following appears to be
the best and most natural course of proceeding in the inven-
tion of additional symbols. When a rule has been discovered
which is not quite general, and which only fails in its appli-
cation to a few instances, annex such additional symbols to
those already in use, or change and modify these so as to
make the rule applicable in all cases, provided always this
can be done without making the same symbol stand for two
different things, and without any violation of analogy. If the
rule itself, by its application to any case, should produce a
new symbol hitherto unexplained, it is a sign that the rule
has been applied to a case which was never intended to fall
under it when it was made. For the solution of this case we
must have recourse to first principles, but when, by these
means, the result has been found, it will be best to agree
that the new symbol furnished by the rule shall stand for
the result furnished by the principle, by which means the
generality of the rule will be attained and the analogy of
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language will not be injured. Of this the following is a re-
markable instance:

To divide c8 by c5 the rule tells us to subtract 5 from 8,
and make the result the exponent of c, which gives the quo-
tient c3. If we apply the same rule to divide c6 by c6, since
6 subtracted from 6 leaves 0, the result is c0, a new symbol,
to which we have attached no meaning. The fact is that the
rule was formed from observation of different powers of c,
and was never intended to apply to the division of a power
of c by the same power. If we apply the common principles to
the division of c6 by c6, the result is 1. We, therefore, agree
that c0 shall stand for 1, and the least inspection will show
that this agreement does not affect the truth of any result
derived from the rule. If, in the solution of any problem, the
symbol c0 should appear, we must consider it is a sign that
we have, in the course of the investigation, divided a power
of c by itself by the common rule, without remarking that
the quotient is 1. We must, therefore, replace c0 by 1, but
it is entirely indifferent at what stage of the process this is
done.

Several extensions might be noticed, which are made
almost intuitively, to which these observations will apply.
Such, for example, is the multiplication and division of any
number by 1, which is not contemplated in the definition
of these operations. Such is also the continual use of 0 as a
quantity, the addition and subtraction of it from other quan-
tities, and the multiplication of it by others, neither of which
were contemplated when these operations were first thought
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of.
We now proceed to the principles on which more com-

plicated divisions are performed. The question proposed in
division, and the manner of answering it, may be explained
in the following manner. Let A be an expression which is to
be divided by H, and let Q be the quotient of the two. By
the meaning of division, if there be no remainder A = QH,
since the quotient is the expression which must multiply the
divisor, in order to produce the dividend. Now let the quo-
tient be made up of different terms, a, b, c, etc., let it be
a+ b− c+ d. That is, let

A = QH, (1)

Q = a+ b− c+ d. (2)

By putting, instead of Q in (1), that which is equal to it
in (2), we find

A = (a+ b− c+ d)H = aH + bH − cH + dH. (3)

Now suppose that we can by any method find the term a
of the quotient, that is, that we can by trial or otherwise
find one term of the quotient. In (3), when the term a is
found, since H is known, the term aH is found. Now if two
quantities are equal, and from them we subtract the same
quantity, the remainders will be equal. Subtract aH from
the equal quantities A and aH + bH − cH + dH, and we
shall find

A− aH = bH − cH + dH = (b− c+ d)H. (4)
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If, then, we multiply the term of the quotient found by the
divisor, and subtract the product from the dividend, and call
the remainder B; then

B = (b− c+ d)H. (5)

That is, if B be made a dividend, and H still continue the
divisor, the quotient is b − c + d, or all the first quotient,
except the part of it which we have found. We then proceed
in the same manner with this new dividend, that is, we find
b and also bH, and subtract it from B, and let B − bH be
represented by C, which gives by the process which has just
been explained

C = (−c+ d)H = −cH + dH. (6)

We now come to a negative term of the quotient. Let
us suppose that we have found c, and that its sign in the
quotient is −. If two quantities are equal, and we add the
same quantity to both, the sums are equal. Let us therefore
add cH to both the equal quantities in (6), and the equation
will become

C + cH = dH; (7)

or if we denote C + cH by D, this is

D = dH.

There is only one term of the quotient remaining, and if that
can be found the process is finished. But as we cannot know
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when we have come to the last term, we must continue the
same process, that is, subtract dH from D, in doing which
we shall find that dH is equal to D, or that the remainder is
nothing. This indicates that the quotient is now exhausted
and that the process is finished.

We will now apply this to an example in which the quo-
tient is of the same form as that in the last process, namely,
consisting of four terms, the third of which has the negative
sign. This is the division of

x4 − y4 − 3x2y2 + x3y + 2xy3 by x− y.

Arrange the first quantity in descending powers of x which
will make it stand thus:

x4 + x3y − 3x2y2 + 2xy3 − y4. (A)

One term of the quotient can be found immediately, for since
it has been shown that the term containing the highest power
of x in a product is made up of nothing but the product of
the terms containing the highest powers of x which occur
in the multiplier and multiplicand, and considering that the
expression (A) is the product of x − y and the quotient,
we shall recover the highest power of x in the quotient by
dividing x4, the highest power of x in (A), by x, its highest
power in x − y. This division gives x3 as the first term of
the quotient. The following is the common process, and with
each line is put the corresponding step of the process above
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explained, of which this is an example:

(H) (A) (a)
x− y) x4 + x3y − 3x2y2 + 2xy3 − y4 (x3

(aH) Subtract x4 − x3y
(b)

(B) Second dividend 2x3y − 3x2y2 + 2xy3 − y4 (+2x2y
(bH) Subtract 2x3y − 2x2y2

(c)
(C) Third dividend − x2y2 + 2xy3 − y4 (−xy2
(cH) Subtract − x2y2 + xy3

(d)
(D) Fourth dividend xy3 − y4 (+y3

(dH) Subtract xy3 − y4

0

The whole quotient is therefore x3 + 2x2y − xy2 + y3.
The second and following terms of the quotient are de-

termined in exactly the same manner as the first. In fact,
this process is not the finding of a quotient directly from
the divisor and dividend, but one term is first found, and by
means of that term another dividend is obtained, which only
differs from the first in having one term less in the quotient,
viz., that which was first found. From this second dividend
one term of its quotient is found, and so on until we obtain
a dividend whose quotient has only one term, the finding of
which finishes the process. It is usual also to neglect all the
terms of the first dividend, except those which are imme-
diately wanted, taking down the others one by one as they
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become necessary. This is a very good method in practice
but should be avoided in explaining the principle, since the
first subtraction is made from the whole dividend, though
the operation may only affect the form of some part of it.

If the student will now read attentively what has been
said on the greatest common measure of two numbers, and
then examine the connexion of whole numbers in arithmetic
and simple expressions in algebra with which we commenced
the subject of division, he will see that the greatest alge-
braical common measure of two expressions may be found in
exactly the same manner as the same operation is performed
in arithmetic. He must also recollect that the greatest com-
mon measure of two expressions A and B is not altered by
multiplying or dividing either of them, A, for example, by
any quantity, provided that quantity has no measure in com-
mon with B. For example, the greatest common measure of
a2 − x2 and ba3 − bx3 is the same with that of 2a2 − 2x2

and a3 − x3, since though a new measure is now introduced
into the first and taken away from the second, nothing is
introduced or taken away which is common to both. The
same observation applies to arithmetic also. For example,
take the numbers 162 and 180. We may, without altering
their greatest common measure, multiply the first by 7 and
the second by 11, etc. The rule for finding the greatest com-
mon measure should be practised with great attention by all
who intend to proceed beyond the usual stage in algebra. To
others it is not of the same importance, as the necessity for
it never occurs in the lower branches of the science.
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In proceeding to the subject of fractions, it must be ob-
served that, in the same manner as in arithmetic, when there
is a remainder which cannot be further divided by the divi-
sor, that is, where the dividend is so reduced that no simple
term multiplied by the first term of the divisor will give the
first term of the remainder, as in the case where the divisor
is a2x + bx2 and the remainder ax + b; in this case a frac-
tion must be added to the quotient, whose numerator is this
remainder, and whose denominator is the divisor. Thus, in
dividing a4 + b4 by a+ b, the quotient is a3 − a2b+ ab2 − b3,
and the remainder 2b4, whence

a4 + b4

a+ b
= a3 − a2b+ ab2 − b3 +

2b4

a+ b
.

The arithmetical rules for the addition, etc., of fractions hold
equally good when the numerators and denominators are

themselves fractions. Thus
3
4
2
7

and
1
5
3
2

are added, etc., exactly

in the same way as 2
5

and 3
7
, the sum of the second being

7× 2 + 5× 3

5× 7

and that of the first
3
2
× 3

4
+ 2

7
× 1

5
2
7
× 3

2

.

The rules for the addition, etc., of algebraic fractions are ex-
actly the same as in arithmetic; for both the numerator and
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denominator of every algebraic fraction stands either for a
whole number or a fraction, and therefore the fraction itself

is either of the same form as 6
7

or
2
3
4
5

. Nevertheless the stu-

dent should attend to some examples of each operation upon
algebraic fractions, by way of practice in the previous opera-
tions. As the subject is not one which presents any peculiar
difficulties, we shall now pass on to the subject of equations,
concluding this article with a list of formulas which it is
highly desirable that the student should commit to memory
before proceeding to any other part of the subject.

(a+ b) + (a− b) = 2a, (1)

(a+ b)− (a− b) = 2b, (2)

a− (a− b) = b, (3)

(a+ b)2 = a2 + 2ab+ b2, (4)

(a− b)2 = a2 − 2ab+ b2, (5)

(2ax+ b)2 = 4a2x2 + 4abx+ b2, (6)

(a+ b)(a− b) = a2 − b2, (7)

(x+ a)(x+ b) = x2 + (a+ b)x+ ab,

(x− a)(x− b) = x2 − (a+ b)x+ ab,

}
(8)

a

b
=
ma

mb
, (9)



on the study of mathematics. 88

a+
c

d
=
ad+ c

d
, a− c

d
=
ad− c
d

, (10)

a

b
+
c

d
=
ad+ bc

bd
,

a

b
− c

d
=
ad− bc
bd

, (11)

a

b
× c =

ac

b
=

a

b

c

,
a

b
× c

d
=
ac

bd
, (12)

a

b
c

=
a

bc
=

a

c
b
, (13)

a

b
c

d

=
ad

bc
=

a

c
b

d

, (14)

1
a

b

=
b

a
. (15)



CHAPTER VIII.

EQUATIONS OF THE FIRST DEGREE.

We have already defined an equation, and have come to
many equations of different sorts. But all of them had this
character, that they did not depend upon the particular
number which any letter stood for, but were equally true,
whatever numbers might be put in place of the letters. For
example, in the equation

a2 − 1

a+ 1
= a− 1

the truth of the assertion made in this algebraical sentence is
the same, whether a be considered as representing 1, 2, 21

2
,

etc., or any other number or fraction whatever. The second
side of this equation is, in fact, the result of the operation
pointed out on the first side. On the first side you are di-
rected to divide a2 − 1 by a + 1; the second side shows you
the result of that division. An equation of this description
is called an identical equation, because, in fact, its two sides
are but different ways of writing down the same number.
This will be more clearly seen in the identical equations

a+ a = 2a, 7a− 3a+ b = 4a− 3b+ 4b, and
a

b
× b = a.

The whole of the formulæ at the end of the last article
are examples of identical equations. There is not one of them
which is not true for all values which can be given to the
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letters which enter into them, provided only that whatever
a letter stands for in one part of an equation, it stands for
the same in all the other parts.

If we take, now, such an equation as a+1 = 8, we have an
equation which is no longer true for every value which can be
given to its algebraic quantities. It is evident that the only
number which a can represent consistently with this equa-
tion is 7, as any other supposition involves absurdity. This
is a new species of equation, which can only exist in some
particular case, which particular case can be found from the
equation itself. The solution of every problem leads to such
an equation, as will be shown hereafter, and, in the elements
of algebra, this latter species of equation is of most impor-
tance. In order to distinguish them from identical equations,
they are called equations of condition, because they cannot
be true when the letters contained in them stand for any
number whatever, and their very existence makes a condi-
tion which the letters contained must fulfil. The solution
of an equation of condition is the process of finding what
number the letter must stand for in order that the equation
may be true. Every such solution is a process of reasoning,
which, setting out with supposing the truth of the equation,
proceeds by self-evident steps, making use of the common
rules of arithmetic and algebra. We shall return to the sub-
ject of the solution of equations of condition, after showing,
in a few instances, how we come to them in the solution
of problems. In equations of condition, the quantity whose
value is determined by the equation is usually represented by
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one of the last letters of the alphabet, and all others by some
of the first. This distinction is necessary only for the begin-
ner; in time he must learn to drop it, and consider any letter
as standing for a quantity known or unknown, according to
the conditions of the problem.

In reducing problems to algebraical equations no general
rule can be given. The problem is some property of a number
expressed in words by which that number is to be found, and
this property must be written down as an equation in the
most convenient way. As examples of this, the reduction of
the following problems into equations is given:

I. What number is that to which, if 56 be added, the
result will be 200 diminished by twice that number?

Let x stand for the number which is to be found.
Then x+ 56 = 200− 2x.
If, instead of 56, 200, and 2, any other given numbers,

a, b, and c, are made use of in the same manner, the equation
which determines x is

x+ a = b− cx.

II. Two couriers set out from the same place, the second
of whom goes three miles an hour, and the first two. The
first has been gone four hours, when the second is sent after
him. How long will it be before he overtakes him?

Let x be the number of hours which the second must
travel to overtake the first. At the time when this event
takes place, the first has been gone x + 4 hours, and will
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have travelled (x+4)2, or 2x+8 miles. The second has been
gone x hours, and will have travelled 3x miles. And, when
the second overtakes the first, they have travelled exactly the
same distance, and, therefore,

3x = 2x+ 8.

If, instead of these numbers, the first goes a miles an
hour, the second b, and c hours elapse before the second is
sent after the first,

bx = ax+ ac.

Four men, A, B, C, and D, built a ship which cost £2607,
of which B paid twice as much as A, C paid as much as
A and B, and D as much as C and B. What did each pay?

Suppose that A paid x pounds,

then B paid 2x. . . ,

C paid x+ 2x or 3x. . . ,

D paid 2x+ 3x or 5x. . . .

All together paid x+ 2x+ 3x+ 5x, or 11x, therefore

11x = 2607.

There are two cocks, from the first of which a cistern is
filled in 12 hours, and the second in 15. How long would
they be in filling it if both were opened together?
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Let x be the number of hours which would elapse before
it was filled. Then, since the first cock fills the cistern in
12 hours, in one hour it fills 1

12
of it, in two hours 2

12
, etc.,

and in x hours x
12

. Similarly, in x hours, the second cock
fills x

15
of the cistern. When the two have exactly filled the

cistern, the sum of these fractions must represent a whole
or 1, and, therefore,

x

12
+

x

15
= 1.

If the times in which the two can fill the cistern are a and
b hours, the equation becomes

x

a
+
y

b
= 1.

A person bought 8 yards of cloth for £3 2s., giving 9s. a
yard for some of it and 7s. a yard for the rest; how much of
each sort did he buy?

Let x be the number of yards at 7s. Then 7x is the
number of shillings they cost. Also 8 − x is the number of
yards at 9s., and (8−x)9, or 72−9x, is the number of shillings
they cost. And the sum of these, or 7x+72−9x, is the whole
price, which is £3 2s., or 62 shillings, and, therefore,

7x+ 72− 9x = 62.

These examples will be sufficient to show the method of
reducing a problem to an equation. Assuming a letter to
stand for the unknown quantity, by means of this letter the
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same quantity must be found in two different forms, and
these must be connected by the sign of equality. However,
the reduction into equations of such problems as are usually
given in the treatises on algebra rarely occurs in the appli-
cations of mathematics. The process is a useful exercise of
ingenuity, but no student need give a great deal of time to it.
Above all, let no one suppose, because he finds himself un-
able to reduce to equations the conundrums with which such
books are usually filled, that, therefore, he is not made for
the study of mathematics, and should give it up. His future
progress depends in no degree upon the facility with which he
discovers the equations of problems; we mean as far as power
of comprehending the subsequent sciences is concerned. He
may never, perhaps, make any considerable step for himself,
but, without doing this, he may derive all the benefits which
the study of mathematics can afford, and even apply them
extensively. There is nothing which discourages beginners
more than the difficulty of reducing problems to equations,
and yet, as respects its utility, if there be anything in the
elements which may be dispensed with, it is this. We do not
wish to depreciate its utility as an exercise for the mind, or to
hinder all from attempting to conquer the difficulties which
present themselves; but to remind every one that, if he can
read and understand all that is set before him, the essential
benefit derived from mathematical studies will be gained,
even though he should never make one step for himself in
the solution of any problem.

We return now to the solution of equations of condition.
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Of these there are various classes. Equations of the first
degree, commonly called simple equations, are those which
contain only the first power of the unknown quantity. Of this
class are all the equations to which we have hitherto come
in the solution of problems. The principle by which they
are solved is, that two equal quantities may be increased or
diminished, multiplied, or divided by any quantity, and the
results will be the same. In algebraical language, if a = b,

a + c = b + c, a − c = b − c, ac = bc, and
a

c
=

b

c
. In

every elementary book it is stated that any quantity may be
removed from one side of the equation to the other, provided
its sign be changed. This is nothing but an application of the
principle just stated, as may be shown thus: Let a+b−c = d,
add c to both quantities, then

a+ b− c+ c = d+ c or a+ b = d+ c.

Again subtract b from both quantities, then a+ b− c− b =
d−b, or a−c = d−b. Without always repeating the principle,
it is derived from observation, that its effect is to remove
quantities from one side of an equation to another, changing
their sign at the same time. But the beginner should not
use this rule until he is perfectly familiar with the manner
of using the principle. He should, until he has mastered a
good many examples, continue the operation at full length,
instead of using the rule, which is an abridgment of it. In
fact it would be better, and not more prolix, to abandon the
received phraseology, and in the example just cited, instead
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of saying “bring the term b to the other side of the equation,”
to say “subtract b from both sides,” and instead of saying
“bring c to the other side of the equation,” to say “add c to
both sides.”

Suppose we have the fractions 3
4
, 1

7
, and 5

14
. If we multi-

ply them all by the product of the denominators 4× 7× 14,
or 392, all the products will be whole numbers. They will

be
3× 392

4
,

1× 392

7
, and

5× 392

14
, and since 392 is mea-

sured by 4, 3 × 392 is also measured by 4, and
3× 392

4
is

a whole number, and so on. But any common multiple of
4, 7, and 14 will serve as well. The least common multiple
will therefore be the most convenient to use for this purpose.
The least common multiple of 4, 7, and 14 is 28, and if the
three fractions be multiplied by 28, the results will be whole
numbers. The same also applies to algebraic fractions. Thus
a

b
,
c

de
, and

e

bdf
, will become simple expressions, if they are

multiplied by b × de × bdf , or b2d2ef . But the most simple
common multiple of b, de, and dbf , is bdef , which should be
used in preference to b2d2ef .

This being premised, we can now reduce any equation
which contains fractions to one which does not. For example,
take the equation

x

3
+

2x

5
=

7

10
− 3− 2x

6
.

If we multiply both these equal quantities by any other,
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the results will be equal. We choose, then, the least quan-
tity, which will convert all the fractions into simple quanti-
ties, that is, the least common multiple of the denominators
3, 5, 10, and 6, which is 30. If we multiply both equal quan-
tities by 30, the equation becomes

30x

3
+

60x

5
=

210

10
− 30(3− 2x)

6
. (1)

But
30x

3
is

30

3
× x or 10x,

60x

5
is

60

5
× x, or 12x, etc.; so

that we have

10x+ 12x = 21− 5(3− 2x), (2)

or 10x+ 12x = 21− (15− 10x), (3)

or 10x+ 12x = 21− 15 + 10x. (4)

Beginners very commonly mistake this process, and forget
that the sign of subtraction, when it is written before a frac-
tion, implies that the whole result of the fraction is to be
subtracted from the rest. As long as the denominator re-
mains, there is no need to signify this by putting the numer-
ator between brackets, but when the denominator is taken
away, unless this be done, the sign of subtraction belongs to
the first term of the numerator only, and not to the whole
expression. The way to avoid this mistake would be to place
in brackets the numerators of all fractions which have the
negative sign before them, and not to remove those brackets
until the operation of subtraction has been performed, as is
done in equation (4).
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The following operations will afford exercise to the stu-
dent, sufficient, perhaps, to enable him to avoid this error:

a+
b− c+ d− e

f
=
af + b− c+ d− e

f
,

a− b− c+ d− e
f

=
af − b+ c− d+ e

f
,

a+ b+
(a− b)2

a+ b
=

2a2 + 2b2

a+ b
,

a+ b− (a− b)2

a+ b
=

4ab

a+ b
.

We can now proceed with the solution of the equation.
Taking up the equation (4) which we have deduced from it,
subtract 10x from both sides, which gives 10x+12x−10x =
21 − 15, or 12x = 6: divide these equal quantities by 12,

which gives
12x

12
=

6

12
, or x = 1

2
. This is the only value

which x can have so as to make the given equation true, or,
as it is called, to satisfy the equation. If instead of x we
substitute 1

2
, we shall find that

1
2

3
+

2× 1
2

5
=

7

10
−

3− 2× 1
2

6
, or

1

6
+

1

5
=

7

10
− 2

6
;

this we find to be true, since

1

6
+

1

5
is

11

30
, and

7

10
− 2

6
=

22

60
, and

11

30
=

22

60
.
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In these equations of the first degree there is one unknown
quantity and all the others are known. These known quan-
tities may be represented by letters, and, as we have said,
the first letters of the alphabet are commonly used for that
purpose. We will now take an equation of exactly the same
form as the last, putting letters in place of numbers:

x

a
+
bx

c
=
d

c
− f − gx

h
.

The solution of this equation is as follows: multiply both
quantities by aceh, the most simple multiple of the denomi-
nators, it then becomes:

acehx

a
+
abcehx

c
=
acdeh

e
− aceh(f − gx)

h
,

or, cehx+ abcehx = acdh− ace(f − gx),

or, cehx+ abcehx = acdh− acef + acegx.

Subtract acegx from both sides, and it becomes

cehx+ abehx− acegx = acdh− acef,
or, (ceh+ abeh− aceg)x = acdh− acef.

Divide both sides by ceh+ abeh− aceg, which gives

x =
acdh− acef

ceh+ abeh− aceg
.

The steps of the process in the second case are exactly
the same as in the first; the same reasoning establishes them
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both, and the same errors, are to be avoided in each. If from
this we wish to find the solution of the equation first given,
we must substitute 3 for a, 2 for b, 5 for c, 7 for d, 10 for e,
3 for f , 2 for g, and 6 for h, which gives for the value of x,

3× 5× 7× 6− 3× 5× 10× 3

5× 10× 6 + 3× 2× 10× 6− 3× 5× 10× 2
,

or,
3× 5× 12

3× 2× 10× 6
, or,

180

360
,

which is 1
2
, the same as before.

If in one equation there are two unknown quantities, the
condition is not sufficient to fix the values of the two quan-
tities; it connects them, nevertheless, so that if one can be
found the other can be found also. For example, the equa-
tion x+ y = 8 admits of an infinite number of solutions, for
take x to represent any whole number or fraction less than 8,
and let y represent what x wants of 8, and this equation is
satisfied. If we have another equation of condition existing
between the same quantities, for example, 3x− 2y = 4; this
second equation by itself has an infinite number of solutions:

to find them, y may be taken at pleasure, and x =
4 + 2y

3
.

Of all the solutions of the second equation, one only is a solu-
tion of the first; thus there is only one value of x and y which
satisfies both the equations, and the finding of these values is
the solution of the equations. But there are some particular
cases in which every value of x and y which satisfies one of
the equations satisfies the other also; this happens whenever
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one of the equations can be deduced from the other. For
example, when x+ y = 8, and 4x− 29 = 3− 4y, the second
of these is the same as 4x + 4y = 3 + 29, or 4x + 4y = 32,
which necessarily follows from the first equation.

If the solution of a problem should lead to two equations
of this sort, it is a sign that the problem admits of an infinite
number of solutions, or is what is called an indeterminate
problem. The solution of equations of the first degree does
not contain any peculiar difficulty; we shall therefore proceed
to the consideration of the isolated negative sign.



CHAPTER IX.

ON THE NEGATIVE SIGN, ETC.

If we wish to say that 8 is greater than 5 by the number 3,
we write this equation 8 − 5 = 3. Also to say that a ex-
ceeds b by c, we use the equation a− b = c. As long as some
numbers whose value we know are subtracted from others
equally known, there is no fear of our attempting to sub-
tract the greater from the less; of our writing 3 − 8, for
example, instead of 8− 3. But in prosecuting investigations
in which letters occur, we are liable, sometimes from inatten-
tion, sometimes from ignorance as to which is the greater of
two quantities, or from misconception of some of the condi-
tions of a problem, to reverse the quantities in a subtraction,
for example to write a−b where b is the greater of two quan-
tities, instead of b−a. Had we done this with the sum of two
quantities, it would have made no difference, because a + b
and b + a are the same, but this is not the case with a − b
and b− a. For example, 8− 3 is easily understood; 3 can be
taken from 8 and the remainder is 5; but 3−8 is an impossi-
bility, it requires you to take from 3 more than there is in 3,
which is absurd. If such an expression as 3 − 8 should be
the answer to a problem, it would denote either that there
was some absurdity inherent in the problem itself, or in the
manner of putting it into an equation. Nevertheless, as such
answers will occur, the student must be aware what sort of
mistakes give rise to them, and in what manner they affect



on the negative sign, etc. 103

the process of investigation.
We would recommend to the beginner to make experi-

ence his only guide in forming his notions of these quanti-
ties, that is, to draw his rules from the observation of many
results, not from any theory. The difficulties which encom-
pass the theory of the negative sign are explained at best in
a manner which would embarrass him: probably he would
not see the difficulties themselves; too easy belief has always
been the fault of young students in mathematics, and it is
a great point gained to get them to start an objection. We
shall observe the effect of this error in denoting a subtraction
on every species of investigation to which we have hitherto
come, and shall deduce rules which the student will recollect
are the results of experience, not of abstract reasoning. The
extensions to which he will be led have rendered Algebra
much more general than it was before, have made it com-
petent to the solution of many, very many questions which
it could not have touched had they not been attended to.
They do, in fact, constitute part of the groundwork of mod-
ern Algebra and should be considered by the student who
is desirous of making his way into the depths of the science
with the highest degree of attention. If he is well practised
in the ordinary rules which have hitherto been explained,
few difficulties can afterwards embarrass him, except those
which arise from some confusion in the notions which he has
formed upon this part of the subject.

For brevity’s sake we hereafter use this phrase. Where
the signs of every term in an expression are changed, it is
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said to have changed its form. Thus +a− b and +b− a are
in different forms, and if a be greater than b, the first is the
correct form and the second incorrect. An extension of a
rule is made by which such a quantity as 3 − 8 is written
in a different way. Suppose that +3 − 8 is connected with
any other number thus, 56 + 3 − 8. This may be written
56 + 3 − (3 + 5), or 56 + 3 − 3 − 5, or 56 − 5. It appears,
then, that +3 − 8, connected with any number is the same
as −5 connected with that number; from this we say that
+3 − 8, or 3 − 8 is the same thing as −5, or 3 − 8 = −5.
This is another way of writing the equation 8 − 3 = 5, and
indicates equally that 8 is greater than 5 by 3. In the same
way, a − b = −c indicates that b is greater than a by the
quantity c. If a be nothing, this equation becomes −b = −c,
which indicates that b = c, since if the equation a− b = −c
be written in its true form b−a = c, and if a = 0, then b = c.
We can now understand the following equations:

a− b+ c− d = −e, or b+ d− a− c = e,

2ab− a2 − b2 = −d− e, or a2 + b2 − 2ab = d+ e.

We must not commence any operations upon such an
equation as a − b = −c, until we have satisfied ourselves of
the manner in which they should be performed, by reference
to the correct form of the equation. This correct form is
b−a = c. This gives d+ b−a = d+ c, or d− (a− b) = d+ c.
Write instead of a−b its symbol−c, and then d−(−c) = d+c.
Here we have performed an operation with a − b, which is
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no quantity, since a is less than b, but this is done because
our present object is, in applying the common rules to such
expressions, to watch the results and exhibit them in their
real forms. The first side d − (−c) is in a form in which
we can attach no meaning to it, and the second side gives
its real form d + c. The meaning of this expression is, that
if with a − b, which we think to be a quantity, but which
is not, since a is less than b, we follow the algebraical rule
in subtracting a − b from d, we shall thereby get the same
result as if we had added the real quantity b− a to d. If we
make use of the form d − (−c), it is because we can use it
in such a manner as never to lose sight of its connexion with
its real form d+ c, and because we can establish rules which
will lead us to the end of a process without any error, except
those which we can correct as certainly at the end as at the
beginning.

The rule by which we proceed, and which we shall estab-
lish by numerous examples, is, that wherever two like signs
come together, the corresponding part of the real form has a
positive sign, and wherever two unlike signs come together,
the real form has a negative sign. Thus the real form of
d− (−c) is d+ c. Again, take the real form b− a = c of the
equation a− b = −c, and it follows that d− (b− a) = d− c,
or d−b+a = d−c, or d+a−b = d−c, or d+(a−b) = d−c.
This is d + (−c) = d − c, another case in which the rule
is verified. Again, multiply together a − b and m − n, the
product is am− an− bm+ bn. This is the same product as
arises from multiplying b−a by n−m, written in a different



on the study of mathematics. 106

order. If, then, b − a = c, and n − m = p, or a − b = −c,
and m− n = −p, we find that (−c)× (−p) = cp. By which
result we mean that a mistake, in the form of both a− b and
m− n, will not produce a mistake in the form of their prod-
uct, which remains what it would have been had the mistake
not been made. Again

(n−m)(b− a) = bn− bm− an+ am,

(n−m)(a− b) = an− am− bn+ bm.

If the first product be real and equal to P , the second is
represented by −P . The first is cp, the second is (−c) × p,
which gives

(−c)× p = −cp.

That is, a mistake in the form of one factor only alters the
form of the product. To distinguish the right form from the
wrong one, we may prefix + to the first, and − to the second,
and we may then recapitulate the results, and add others,
which the student will now be able to verify.

The sign + placed before single quantities shows that the
form of the quantity is correct; the sign − shows that it has
been mistaken or changed.

a+ (+b) = a+ b, a+ (−b) = a− b,
a− (+b) = a− b, a− (−b) = a+ b,

(+a)× (+b) = +ab, (+a)× (−b) = −ab,
(−a)× (−b) = +ab = (+a)× (+b),
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+a

+b
= +

a

b
,

+a

−b
= −a

b
=
−a
+b

,

−a
−b

= +
a

b
,

− a×−a = + a2,

− a×−a×−a = +a2 ×−a = − a3,
− a×−a×−a×−a = −a3 ×−a = + a4,

etc., etc.

We see, then, that a change in the form of any quantity
changes the form of those powers whose exponent is an odd
number, but not of those whose exponent is an even number.
By these rules we shall be able to tell what changes would
be made in an expression by altering the forms of any of its
letters. It may be fairly asked whether we are not changing
the meaning of the signs + and −, in making +a stand for
an expression in which we do not alter the signs, and −a for
one in which the signs are altered. The change is only in
name, for since the rule of addition is, “annex the expres-
sions which are to be added without altering the signs of
either,” or “annex the expressions without altering the form
of either;” the quantity a + b, which is the sum of the two
expressions a and b, stands for the same as +a+ b, in which
the new notion of the sign + is used, viz., the expressions
a and b are annexed with unaltered forms, which is denoted
by writing together +a and +b. Again, the rule for sub-
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traction is, “change the sign of the subtrahend or expression
which is to be subtracted, and annex the result to the other
expression,” or “change the form of the subtrahend and an-
nex it to the other,” which, the expressions being a and b,
is written a − b, which answers equally well to the second
notion of the sign −, since +a− b indicates that a and b are
to be annexed, the first without, the second with a change
of form. These ideas of the signs + and − give, therefore, in
practice, the same results as the former ones, and, in future,
the two meanings may be used indiscriminately. But when
a single term is used, such as +a or −a, the last acquired
notions of + and − are always understood.

This much being premised, we can see, by numberless
instances, that, if the form of a quantity is to be changed, it
matters nothing whether it is changed at the beginning of the
process, or whether we wait till the end, and then follow the
rules above mentioned. This is evident to the more advanced
student, from the nature of the rules themselves, but the
beginner should satisfy himself of this fact from experience.
We now give a proof of this, as far as one expression can
prove it, in the solution of the equations,

a2

b
+ ax =

a2x

b
+ a− b,

and
a2

b
− ax =

a2x

b
− a− b,

which two equations only differ in the form in which a ap-
pears. For, if the form of a in the first equation be altered,
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that of
a2

b
and

a2x

b
is unaltered, +ax becomes −ax, and

+a becomes −a. We now solve the two equations in oppo-
site columns.

a2

b
+ ax =

a2x

b
+ a− b,

a2 + abx = a2x+ ab− b2,
a2 − ab+ b2 = a2x− abx

= (a2 − ab)x,

x =
a2 − ab+ b2

a2 − ab
;

a2

b
− ax =

a2x

b
− a− b,

a2 − abx = a2x− ab− b2,
a2 + ab+ b2 = a2x+ abx

= (a2 + ab)x,

x =
a2 + ab+ b2

a2 + ab
.

The only difference between these expressions arises from
the different form of a in the two. If, in either of them,
−a be put instead of +a, and the rules laid down be followed,
the other will be produced. We see, then, that a simple
alteration of the form of a in the original equation produces
no other change in the result, or in any one of the steps
which lead to that result, except a simple alteration in the
form of a. From this it follows that, having the solution of
an equation, we have also the solution of all the equations
which can be formed from it, by altering the form of the
different known quantities which are contained in it. And,
as all problems can be reduced to equations, the solution
of one problem will lead us to the solution of others, which
differ from the first in producing equations in which some of
the known quantities are in different forms. Also, in every
identical equation, the form of one or more of its quantities
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may be altered throughout, and the equation will still remain
identically true. For example,

a3 − b3

a− b
= a2 + ab+ b2.

Change +b into −b, and this equation will become

a3 + b3

a+ b
= a2 − ab+ b2,

which last, common division will show to be true.
Again, suppose than when a, b, and c are in a given

form, which we denote by +a, +b, and +c, the solution of a
problem is,

x =
b2 − 4ac

a+ c− b
.

The following table will show the alterations which take
place in x when the forms of a, b, and c are changed in
different manners, and the verification of it will be an exercise
for the student.

FORMS OF a, b, AND c. VALUES OF x.

+a, + b, + c
b2 − 4ac

a+ c− b
,

+a, + b, − c b2 + 4ac

a− c− b
,

+a, − b, − c b2 + 4ac

a− c+ b
,

−a, + b, − c − b
2 − 4ac

b+ a+ c
,

−a, − b, − c b2 − 4ac

b− a− c
.
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Also, the expression for x may be written in the following
different ways, the forms of a, b, and c remaining the same:

b2 − 4ac

a+ c− b
, − b2 − 4ac

b− a− c
, − 4ac− b2

a+ c− b
,

4ac− b2

b− a− c
.

We now proceed to apply these principles to the solution
of the following problems:

Two couriers, A and B, in the course of a journey be-
tween the towns C and D, are at the same moment of time
at A and B. A goes m miles, and B, n miles an hour. At
what point between C and D are they together? It is evi-
dent that the answer depends upon whether they are going
in the same or opposite directions, whether A goes faster
or slower than B, and so on. But all these, as we shall
see, are included in the same general problem, the difference
between them corresponding to the different forms of the let-
ters which we shall have occasion to use. After solving the
different cases which present themselves, each upon its own
principle, we shall compare the results in order to establish
their connexion. Let the distance AB be called a.

Case first.—Suppose that they are going in the same di-
rection from C to D, and that m is greater than n. They will
then meet at some point between B and D. Let that point
be H, and let AH be called x. Then A travels through AH,
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or x, in the time during which B travels through BH, or
x − a. But, since A goes m miles an hour, he travels the

distance x in
x

m
hours. Again, B travels the distance x− a

in
x− a
n

hours. These times are the same, and, therefore,

x

m
=
x− a
n

, or x =
ma

m− n
= AH

and x− a =
na

m− n
= BH.

The time which elapses before they meet is

x

m
or

a

m− n
.

Case second.—Suppose them now moving in the same
direction as before, but let B move faster than A. They never
will meet after they come to A and B, since B is continually
gaining upon A, but they must have met at some point before
reaching A and B. Let that point be H, and, as before, let
AH = x. Then since A travels through HA or x in the time

during which B travels through HB, or x + a, in the same
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manner as in the last case, we show that

x

m
=
x+ a

n
, or x =

ma

n−m
= AH

and x+ a =
na

n−m
= BH.

The time elapsed is
a

n−m
.

Case third.—If they are moving from D to C, and if
B moves faster than A, the point H is the same as in the last
case, since, if having in the last case arrived at A and B, they
move back again at the same rate, they will both arrive at
the point H together. The answers in this case are therefore
the same as in the last.

Case fourth.—Similarly, if they are moving from D to C,
and A moves faster than B, the answers are the same as in
the first case, since this is a reverse of the first case, as the
third is of the second. We reserve for the present the case in
which they move equally fast, as another species of difficulty
is involved which has no connexion with the present subject.
We shall return to it hereafter.

Case fifth.—Suppose them now moving in contrary di-
rections, viz.: A towards D and B towards C. Whether
A moves faster or slower than B, they must now meet some-
where between A and B; as before let them meet in H, and
let AH = x. Then A moves through AH, or x, in the same
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time as B moves through BH, or a− x. Therefore

x

m
=
a− x
n

, or

x =
ma

m+ n
,

a− x =
na

m+ n
.

The time elapsed is
a

m+ n
.

Case sixth.—Let them be moving in contrary directions,
but let A be moving towards C, and B towards D. They will
then have met somewhere between A and B, and as this is
only the reverse of the last case, just as the fourth is of the
first, or the third of the second, the answers are the same.
We now exhibit the results of these different cases in a table,
stating the circumstances of each case, and also whether the
time of meeting is before or after the instant which finds
them at A and B.

Now
a

m− n
and

a

n−m
are the same quantity written in

different forms, for n−m is −(m− n); and according to the
rules

a

n−m
= − a

m− n
.

Similarly
ma

n−m
= − ma

m− n
,
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Circumstances of the case.
Direction of
the point H.

Value
of AH.

Value
of BH.

Time of
meeting

1.
{
Both move from C to D,
A moves faster than B.

Between
B and D.

ma

m− n

na

m− n

a

m− n
after.

2.
{
Both move from C to D,
A moves slower than B.

Between
A and C.

ma

n−m

na

n−m

a

n−m
before.

3.
{
Both move from D to C,
A moves slower than B.

Between
A and C.

ma

n−m

na

n−m

a

n−m
after.

4.
{
Both move from D to C,
A moves faster than B.

Between
B and D.

ma

m− n

na

m− n

a

m− n
before.

5.
{
A moves towards D and
B towards C.

Between
A and B.

ma

m+ n

na

m+ n

a

m+ n
after.

6.
{
A moves towards C and
B towards D.

Between
A and B.

ma

m+ n

na

m+ n

a

m+ n
before.

and so on.
We see also, that in the first and second cases, which differ

in this, that AH falls to the right in the first, and to the left in

the second, the forms of AH are different, there being
ma

m− n
in the first, and − ma

m− n
in the second. Again, in the same

cases, in the first of which the time of meeting is after, and
in the second before the moment of being at A and B, we see
a difference of form in the value of that time; in the first it

is
a

m− n
, and in the second − a

m− n
, or

a

n−m
. The same

remarks apply to the third and fourth examples. Again, in
the first and fifth cases, which only differ in this, that B is
moving towards D in the first, and in the contrary direction
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towards C in the fifth, the values of AH, and of the time,
may be deduced from the first by changing the form of n, and
writing +n, instead of −n. The expression for BH in the

first, if the form of n be likewise changed, becomes − na

m+ n
,

which is the value of BH in the fifth, but in a different form.
But we observe that BH falls to the left of B in the fifth,
whereas it fell to the right in the first. Again, in the first and
sixth examples, which differ in this that A moves towards D
in the first and towards C in the sixth, the value of AH in
the sixth may be deduced from that of AH in the first by
changing the form of m, which change makes AH become
−ma
−m− n

, or
−ma

−(m+ n)
, or

ma

m+ n
. If we alter the value of the

time in the first, in the same manner, it becomes
a

−m− n
,

or − a

m+ n
, which is of a different form from that in the

sixth; but it must also be observed that the first is after and
the other before the moment when they are at A and B. In
the fifth and sixth examples which differ in this, that the
direction in which both are going is changed, since in the
fifth they move towards one another, and in the sixth away
from one another, the values of AH and BH in the one may
be deduced from those in the other by a change of form, both
in m and n, which gives the same values as before. But if
m and n change their forms in the expression for the time,

the value in the sixth case is
a

−m− n
, or − a

m+ n
. Also the

time in the fifth case is after the moment at which they are
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Circumstances of the case.
Direction of
the point H.

Value
of AH.

Value
of BH.

Time of
meeting

1.
{
Both move from C to D,
A moves faster than B.

Between
B and D.

ma

m− n

na

m− n

a

m− n
after.

2.
{
Both move from C to D,
A moves slower than B.

Between
A and C.

ma

n−m

na

n−m

a

n−m
before.

3.
{
Both move from D to C,
A moves slower than B.

Between
A and C.

ma

n−m

na

n−m

a

n−m
after.

4.
{
Both move from D to C,
A moves faster than B.

Between
B and D.

ma

m− n

na

m− n

a

m− n
before.

5.
{
A moves towards D and
B towards C.

Between
A and B.

ma

m+ n

na

m+ n

a

m+ n
after.

6.
{
A moves towards C and
B towards D.

Between
A and B.

ma

m+ n

na

m+ n

a

m+ n
before.

(Table of Page 115 Repeated.)

at A and B, and in the sixth case it is before. From these
comparisons we deduce the following general conclusions:

1. If we take the first case as a standard, we may, from
the values which it gives, deduce those which hold good in all
the other cases. If a second case be taken, and it is required
to deduce answers to the second case from those of the first,
this is done by changing the sign of all those quantities whose
directions are opposite in the second case to what they are
in the first, and if any answer should appear in a negative

form, such as
ma

m− n
, when m is less than n, which may be

written thus − ma

n−m
, it is a sign that the quantity which
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it represents is different in direction in the first and second
cases. If it be a right line measured from a given point in all
the cases, such as AH, it is a sign that AH falls on the left
in the second case, if it fell on the right in the first case, and
the converse. If it be the time elapsed between the moment
in which the couriers are at A and B and their meeting, it is
a sign that the moment of meeting is before the other, in the
second case, if it were after it in the first, and the converse.
We see, then, that these six cases can be all contained in
one if we apply this rule, and it is indifferent which of the
cases is taken as the standard, provided the corresponding
alterations are made to determine answers to the rest.

This detail has been entered into in order that the student
may establish from his own experience the general principle
which will conclude this part of the subject. Further illus-
tration is contained in the following problem:

A workman receives a shillings a day for his labor or a
proportion of a shillings for any part of a day which he works.
His expenses are b shillings every day, whether he works or
no, and after m days he finds that he has gained c shillings.
How many days did he work? Let x be that number of
days, x being either whole or fractional; then for his work he
receives ax shillings, and during the m days his expenditure
is bm shillings, and since his gain is the difference between
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his receipts and expenditure:

ax− bm = c,

or x =
bm+ c

a
.

Now suppose that he had worked so little as to lose c shillings
instead of gaining anything. The equation from which x is
derived is now

bm− ax = c,

which, when its form is changed, becomes

ax− bm = −c,

an equation which only differs from the former in having
−c written instead of c. The solution of the equation is

x =
bm− c
a

,

which only differs from the former in having−c instead of +c.
It appears then that we may alter the solution of a prob-
lem which proceeds upon the supposition of a gain into the
solution of one which supposes an equal loss, by changing
the form of the expression which represents that gain; and
also that if the answer to a problem which we have solved
upon the supposition of a gain should happen to be negative,
suppose it −c, we should have proceeded upon the supposi-
tion that there is a loss and should in that case have found
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a loss, c. When such principles as these have been estab-
lished, we have no occasion to correct an erroneous solution
by recommencing the whole process, but we may, by means
of the form of the answer, set the matter right at the end.
The principle is, that a negative solution indicates that the
nature of the answer is the very reverse of that which it was
supposed to be in the solution; for example, if the solution
supposes a line measured in feet in one direction, a negative
answer, such as −c, indicates that c feet must be measured
in the opposite direction; if the answer was thought to be a
number of days after a certain epoch, the solution shows that
it is c days before that epoch; if we supposed that A was to
receive a certain number of pounds, it denotes that he is to
pay c pounds, and so on, In deducing this principle we have
not made any supposition as to what −c is; we have not as-
serted that it indicates the subtraction of c from 0; we have
derived the result from observation only, which taught us
first to deduce rules for making that alteration in the result
which arises from altering +c into −c at the commencement;
and secondly, how to make the solution of one case of a prob-
lem serve to determine those of all the others. By observation
then the student must acquire his conviction of the truth of
these rules, reserving all metaphysical discussion upon such
quantities as +c and −c to a later stage, when he will be
better prepared to understand the difficulties of the subject.
We now proceed to another class of difficulties, which are
generally, if possible, as much misconceived by the beginner
as the use of the negative sign.



on the negative sign, etc. 121

Take any fraction
a

b
. Suppose its numerator to remain

the same, but its denominator to decrease, by which means

the fraction itself is increased. For example,
5

12
is greater

than
5

20
or the twelfth part of 5 is greater than its twentieth

part. Similarly,
21
2

41
6

is greater than
21
2

27
2

, etc. If, then, b be

diminished more and more, the fraction
a

b
becomes greater

and greater, and there is no limit to its possible increase.

To show this, suppose that b is a part of a, or that b =
a

m
.

Then
a

b
or

a
a
m

is m. Now since b may diminish so as to be

equal to any part of a, however small, that is, so as to make

m any number, however great,
a

b
which is = m may be any

number however great. This diminution of b, and the conse-

quent increase of
a

b
, may be carried on to any extent, which

we may state in these words: As the quantity b becomes

nearer and nearer to 0, the fraction
a

b
increases, and in the

interval in which b passes from its first magnitude to 0, the

fraction
a

b
passes from its first value through every possible

greater number. Now, suppose that the solution of a prob-

lem in its most general form is
a

b
, but that in one particular

case of that problem b is = 0. We have then instead of a

solution
a

0
, a symbol to which we have not hitherto given a
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meaning.
To take an instance: return to the problem of the two

couriers, and suppose that they move in the same direction
from C to D (Case first) at the same rate, or that m = n.

We find that AH =
ma

m− n
or

ma

n−m
or

ma

0
. On looking

at the equation which produced this result we find that it

becomes
x

m
=
x− a
m

, or x = x− a, which is impossible. On

looking at the manner in which this equation was formed,
we find that it was made on the supposition that A and B
are together at some point, which in this case is also impos-
sible, since if they move at the same rate, the same distance
which separated them at one moment will separate them at
any other, and they will never be together, nor will they ever
have been together on the other side of A. The conclusion

to be drawn is, that such an equation as x =
a

0
indicates

that the supposition from which x was deduced can never
hold good. Nevertheless in the common language of algebra
it is said that they meet at an infinite distance, and that
a

0
is infinite. This phrase is one which in its literal meaning

is an absurdity, since there is no such thing as an infinite
number, that is a number which is greater than any other,
because the mind can set no bounds to the magnitude of the
numbers which it can conceive, and whatever number it can
imagine, however great, it can imagine the next to it. But
as the use of the phrase is very general, the only method
is to attach a meaning which shall not involve absurdity or
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confusion of ideas. The phrase used is this: When c = b,
a

c− b
=

a

0
and is infinitely great. The student should al-

ways recollect that this is an abbreviation of the following

sentence. “The fraction
a

c− b
becomes greater and greater

as c approaches more and more near to b; and if c, setting
out from a certain value, should change gradually until it

becomes equal to b, the fraction
a

c− b
setting out also from

a certain value, will attain any magnitude however great, be-
fore c becomes equal to b.” That is, before a fraction can

assume the form
a

0
, it must increase without limit. The sym-

bol ∞ is used to denote such a fraction, or in general any
quantity which increases without limit. The following equa-
tion will tend to elucidate the use of this symbol. In the
problem of the two couriers, the equation which gave the re-

sult
ma

0
was

x

m
=
x− a
m

, or x = x − a, which is evidently

impossible. Nevertheless, the larger x is taken the more near
is this equation to the truth, as may be proved by dividing

both sides by x, when it becomes 1 = 1− a

x
, which is never

exactly true. But the fraction
a

x
decreases as x increases, and

by taking x sufficiently great may be reduced to any degree

of smallness. For example, if it is required that
a

x
should be

as small as
1

10000000
of a unit, take x as great as 10000000a,

and the fraction becomes
a

10000000a
, or

1

10000000
. But as
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a

x
becomes smaller and smaller, the equation 1 = 1− a

x
be-

comes nearer and nearer the truth, which is expressed by

saying that when 1 = 1 − a

x
, or x = x − a, the solution is

x = ∞. In the solution of the problem of the two couriers
this does not appear to hold good, since when m = n and

x =
ma

0
the same distance a always separates them, and no

travelling will bring them nearer together. To show what is
meant by saying that the greater x is, the nearer will it be
a solution of the problem, suppose them to have travelled at
the same rate to a great distance from C. They can never

come together unless CA becomes equal to CB, or A coin-
cides with B, which never happens, since the distance AB
is always the same. But if we suppose that they have met,
though an error always will arise from this false supposition,
it will become less and less as they travel farther and farther
from C. For example, let CA = 10000000AB, then the sup-
posing that they have met, or that B and A coincide, or that

BA = 0, is an error which involves no more than
1

10000000
of AC; and though AB is always of the same numerical mag-
nitude, it grows smaller and smaller in comparison with AC,
as the latter grows greater and greater.

Let us suppose now that in the problem of the two couri-
ers they move in the same direction at the same rate, as in
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the case we have just considered, but that moreover they
set out from the same point, that is, let a = 0. It is now
evident that they will always be together, that is, that any
value of x whatever is an answer to the question. On looking

at the value of AH, or
ma

m− n
, we find the numerator and

denominator both equal to 0, and the value of AH appears

in the form
0

0
. But from the problem we have found that one

value cannot be assigned to AH, since every point of their
course is a point where they are together. The solution of
the following equation will further elucidate this. Let

ax+ by = c,

dx+ ey = f,

from which, by the common method of solution, we find

x =
ce− bf
ae− bd

, y =
af − cd
ae− bd

.

Now, let us suppose that ce = bf and ae = bd. Dividing the
first of these by the second, we find

ce

ae
=
bf

bd
, or

c

a
=
f

d
, or cd = af.

The values both of x and y in this case assume the form
0

0
;

to find the cause of this we must return to the equations. If
we divide the first of these by c, and the second by f , we
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find that

a

c
x+

b

c
y = 1,

d

f
x+

e

f
y = 1.

But the equations ce = bf and cd = af give us
b

c
=

e

f

and
a

c
=

d

f
, that is, these two are, in fact, one and the

same equation repeated, from which, as has been explained
before, an infinite number of values of x and y can be found;
in fact, any value may be given to x provided y be then found
from the equation. We see that in these instances, when the

value of any quantity appears in the form
0

0
, that quantity

admits of an infinite number of values, and this indicates
that the conditions given to determine that quantity are not
sufficient. But this is not the only cause of the appearance

of a fraction in the form
0

0
. Take the identical equation

a2 − b2

c(a− b)
=
a+ b

c
.

When a approaches towards b, a+ b approaches towards 2b,
and a2 − b2 and a − b approach more and more nearly to-
wards 0. If a = b the equation assumes this form:

0

0
=

2b

c
.
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This may be explained thus: if we multiply the numerator

and denominator of the fraction
A

B
by a − b (which does

not alter its value) it becomes
Aa− Ab
Ba−Bb

. If in the course of

an investigation this has been done when the two quantities

a and b are equal to one another, the fraction
A

B
or

Aa− Ab
Ba−Bb

will appear in the form
0

0
. But since the result would have

been
A

B
had that multiplication not been performed, this

last fraction must be used instead of the unmeaning form
0

0
.

Thus the fraction
a2 − b2

c(a− b)
or

(a+ b)(a− b)
c(a− b)

is the frac-

tion
a+ b

c
after its numerator and denominator have been

multiplied by a− b, and may be used in all cases except that

in which a = b. When the form
0

0
occurs, the problem must

be carefully examined in order to ascertain the reason.



CHAPTER X.

EQUATIONS OF THE SECOND DEGREE.

Every operation of algebra is connected with another which
is exactly opposite to it in its effects. Thus addition and sub-
traction, multiplication and division, are reverse operations,
that is, what is done by the one is undone by the other. Thus

a+ b− b is a, and
ab

b
is a. Now in connexion with the rais-

ing of powers is a contrary operation called the extraction of
roots. The term root is thus explained: We have seen that
aa, or a2, is called the square of a; from which a is called
the square root of a2. As 169 is called the square of 13, 13 is
called the square root of 169. The following table will show
how this phraseology is carried on.

a is called the square root of a2, denoted by
√
a2,

a “ “ “ cube root of a3, “ “
3
√
a3,

a “ “ “ fourth root of a4, “ “
4
√
a4,

a “ “ “ fifth root of a5, “ “
5
√
a5,

etc., etc., etc.

If b stand for a5, 5
√
b stands for a, and the foregoing table

may be represented thus:

If a2 = b, a =
√
b,

if a3 = b, a =
3
√
b, etc.
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The usual method of proceeding is to teach the student
to extract the square root of any algebraical quantity imme-
diately after the solution of equations of the first degree. We
would rather recommend him to omit this rule until he is ac-
quainted with the solution of equations of the second degree,
except in the cases to which we now proceed. In arithmetic,
it must be observed that there are comparatively very few
numbers of which the square root can be extracted. For
example, 7 is not made by the multiplication either of any
whole number or fraction by itself. The first is evident; the
second cannot be readily proved to the beginner, but he may,
by taking a number of instances, satisfy himself of this, that
no fraction which is really such, that is whose numerator is
not measured by its denominator, will give a whole number
when multiplied by itself, thus 4

2
× 4

3
or 16

9
is not a whole

number, and so on. The number 7, therefore, is neither the
square of a whole number, nor of a fraction, and, properly
speaking, has no square root. Nevertheless, fractions can be
found extremely near to 7, which have square roots, and this
degree of nearness may be carried to any extent we please.
Thus, if required, between 7 and 7 1

1000000000
could be found a

fraction which has a square root, and the fraction in the last
might be decreased to any extent whatever, so that though
we cannot find a fraction whose square is 7, we may never-
theless find one whose square is as near to 7 as we please.
To take another example, if we multiply 1.4142 by itself the
product is 1.99996164, which only differs from 2 by the very
small fraction .00003836, so that the square of 1.4142 is very
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nearly 2, and fractions might be found whose squares are still
nearer to 2. Let us now suppose the following problem. A
man buys a certain number of yards of stuff for two shillings,
and the number of yards which he gets is exactly the number
of shillings which he gives for a yard. How many yards does

he buy? Let x be this number, then
2

x
is the price of one

yard, and x =
2

x
or x2 = 2. This, from what we have said,

is impossible, that is, there is no exact number of yards,
or parts of yards, which will satisfy the conditions; never-
theless, 1.4142 yards will nearly do it, 1.4142136 still more
nearly, and if the problem were ever proposed in practice,
there would be no difficulty in solving it with sufficient near-
ness for any purpose. A problem, therefore, whose solution
contains a square root which cannot be extracted, maybe
rendered useful by approximation to the square root.

Equations of the second degree, commonly called
quadratic equations, are those in which there is the sec-
ond power, or square of an unknown quantity: such as
x2 − 3 = 4x2 − 15, x2 + 3x = 2x2 − x− 1, etc. By transpo-
sition of their terms, they may always be reduced to one of
the following forms:

ax2 + b = 0,

ax2 − b = 0,

ax2 + bx+ c = 0,

ax2 − bx+ c = 0,
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ax2 + bx− c = 0,

ax2 − bx− c = 0.

For example, the two equations given above, are equivalent
to 3x2 − 12 = 0, and x2 − 4x − 1 = 0, which agree in form
with the second and last. In order to proceed to each of these
equations, first take the equation x2 = a2. This equation is
the same as x2 − a2 = 0, or (x + a)(x − a) = 0. Now, in
order that the product of two or more quantities may be
equal to nothing, it is sufficient that one of those quantities
be nothing, and therefore a value of x may be derived from
either of the following equations:

x− a = 0,

or x+ a = 0,

the first of which gives x = a, and the second x = −a. To
elucidate this, find x from the following equation:

(3x+ a)(a3 + x3) = (x2 + ax)(a2 + ax+ 2x2);

develop this equation, and transpose all its terms on one
side, when it becomes

x4 − 2a2x2 + a4 + 2a3x− 2ax3 = 0,

or (x2 − a2)2 − 2ax(x2 − a2) = 0,

or (x2 − a2)(x2 − 2ax− a2) = 0.

This last equation is true when x2−a2 = 0, or when x2 = a2,
which is true either when x = +a, or x = −a. If in the
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original equation +a is substituted instead of x, the result
is 4a × 2a3 = 2a2 × 4a2; if −a be substituted instead of x,
the result is 0 = 0, which show that +a and −a are both
correct values of x. We have here noticed, for the first time,
an equation of condition which is capable of being solved by
more than one value of x. We have found two, and shall find
more when we can solve the equation x2 − 2ax− a2 = 0, or
x2−2ax = a2. Every equation of the second degree, if it has
one value of x, has a second, of which x2 = a2 is an instance,
where x = ±a, in which by the double sign ± is meant, that
either of them may be used at pleasure. We now proceed to
the solution of ax2 − bx+ c = 0. In order to understand the
nature of this equation, let us suppose that we take for x
such a value, that ax2 − bx+ c, instead of being equal to 0,
is equal to y, that is

y = ax2 − bx+ c,∗ (1)

in which the value of y depends upon the value given to x,
and changes when x changes. Let m be one of those quanti-
ties which, when substituted instead of x, makes ax2−bx+c
equal to nothing, in which case m is called a root of the
equation,

ax2 − bx+ c = 0, (2)

∗In the investigations which follow, a, b, and c are considered as
having the sign which is marked before them, and no change of form is
supposed to take place.
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and it follows that

am2 − bm+ c = 0. (3)

Subtract (3) from (1), the result of which is

y = a(x2 −m2)− b(x−m) = (x−m)(a x+m− b).

Here y is evidently equal to 0, when x = m, as we might
expect from the supposition which we made; but it is also
nothing when a(x + m)− b = 0; there is, therefore, another
value of x, for which y = 0; if we call this n we find it from
the equation a(n+m)− b = 0,

or n+m =
b

a
. (4)

In (3) substitute for b its value derived from (4), from which
b = a(n+m); it then becomes

am2 − am(n+m) + c = 0, or c− amn = 0,

which gives

mn =
c

a
. (5)

Substitute in (1) the values of b and c derived from
(4) and (5), which gives

y = ax2 − a(m+ n)x+ amn

= a(x2 −m+ nx+mn).
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Now the second factor of this expression arises from multi-
plying together x−m and x− n; therefore,

y = a(x−m)(x− n). (6)

To take an example of this, let y = 4x2− 5x+ 1. Here when
x = 1, y = 4 − 5 + 1 = 0, and therefore m = 1. If we
divide 4x2− 5x+ 1 by x− 1, the quotient (which is without
remainder) is 4x− 1, and therefore

y = (x− 1)(4x− 1).

This is also nothing when 4x−1 = 0, or when x is 1
4
. There-

fore n = 1
4
, and y = 4(x− 1)(x− 1

4
), a result coinciding with

that of (6). If, therefore, we can find one of the values of x
which satisfy the equation ax2 − bx+ c = 0, we can find the
other and can divide ax2 − bx + c into the factors a, x−m
and x− n, or

ax2 − bx+ c = a(x−m)(x− n).

If we multiply x + m by x + n, the only difference between
(x+m)(x+n) and (x−m)(x−n) is in the sign of the term
which contains the first power of x. If, therefore,

ax2 − bx+ c = a(x−m)(x− n),

it follows that

ax2 + bx+ c = a(x+m)(x+ n).
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We now take the expression ax2 − bx− c. If there is one
value of x which will make this quantity equal to 0, let this
be m, and let

y = ax2 − bx− c.

Then

0 = am2 − bm− c,

from which

y = a(x2 −m2)− b(x−m)

= (x−m)(a x+m− b)
= (x−m)(ax+ am− b).

Let
am− b
a

be called n, or let am− b = an; then

y = (x−m)(ax+ an)

= a(x−m)(x+ n).

As an example, it may be shown that

3x2 − x− 2 = 3(x− 1)(x+ 2
3
).

Again, with regard to ax2 + bx− c, since (x+m)(x− n)
only differs from (x − m)(x + n)) in the sign of the term
which contains the first power of x, it is evident that

if ax2 − bx− c = a(x−m)(x+ n),

ax2 + bx− c = a(x+m)(x− n).
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Results similar to those of the first case may be obtained
for all the others, and these results may be arranged in the
following way. In the first and third, m is a quantity, which,
when substituted for x, makes y = 0, and in the second and
fourth m and n are the same as in the first and third.

1st y = ax2 − bx+ c = a(x−m)(x− n),

m+ n =
b

a
, mn =

c

a
.

2d y = ax2 + bx+ c = a(x+m)(x+ n),

m+ n =
b

a
, mn =

c

a
.

3d y = ax2 − bx− c = a(x−m)(x+ n),

m− n =
b

a
, mn =

c

a
.

4th y = ax2 + bx− c = a(x+m)(x− n),

m− n =
b

a
, mn =

c

a
.

We must now inquire in what cases a value can be found
for x, which will make y = 0 in these different expressions,
and in this consists the solution of equations of the second
degree.

Let
y = ax2 − bx+ c, (1)

and observe that (2ax − b)2 = 4a2x2 − 4abx + b2. Multiply
both sides of (1) by 4a, which gives

4ay = 4a2x2 − 4abx+ 4ac. (2)
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Add b2 to the first two terms of the second side of (2), and
subtract it from the third, which will not alter the whole,
and this gives

4ay = 4a2x2−4abx+b2+4ac−b2 = (2ax−b)2+ac−b2. (3)

Now it must be recollected that the square of any quan-
tity is positive whether that quantity is positive or nega-
tive. This has been already sufficiently explained in saying
that a change of the form of any expression does not change
the form of its square. Common multiplication shows that
(c − d)2 and (d − c)2 are the same thing; and, since one
of these must be positive, the other must be also positive.
Whenever, therefore, we wish to say that a quantity is posi-
tive, it can be done by supposing it equal to the square of an
algebraical quantity. In equation (3) there are three distinct
cases to be considered.

I. When b2 is greater than 4ac, that is, when b2 − 4ac is
positive, let b2 − 4ac = k2, which expresses the condition.

Then
4ay = (2ax− b)2 − k2, (4)

and we determine those values of x, which make y = 0, from
the equation,

(2ax− b)2 − k2 = 0.

We have already solved such an equation, and we find
that

2ax− b = ±k,
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where either sign may be taken. This shows that y or
ax2 − bx+ c is equal to nothing either when

instead of x is put
b+ k

2a
=
b+
√
b2 − 4ac

2a
= m,

or
b− k

2a
=
b−
√
b2 − 4ac

2a
= n,

the second values being formed by putting, instead of k its
value

√
b2 − 4ac. They are both positive quantities, because

k2 being equal to b2 − 4ac is less than b2, and therefore k is

less than b, and therefore
b+ k

2a
and

b− k
2a

are both positive.

These are the quantities which we have called m and n in
the former investigations, and, therefore,

ax2 − bx+ c = a(x−m)(x− n)

= a

(
x− b+

√
b2 − 4ac

2a

)(
x− b−

√
b2 − 4ac

2a

)
.

Actual multiplication of the factors will show that this is an
identical equation.

II. When b2, instead of being greater than 4ac, is equal
to it, or when b2−4ac = 0 and k = 0. In this case the values

of m and n are equal, each being
b

2a
and

y = ax2 − bx+ c = a(x−m)(x− n) = a

(
x− b

2a

)2

.
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In this case y is said, in algebra, to be a perfect square,

since its square root can be extracted, and is
√
a

(
x− b

2a

)
.

Arithmetically speaking, this would not be a perfect square
unless a was a number whose square root could be extracted,
but in algebra it is usual to call any quantity a perfect square
with respect to any letter, which, when reduced, does not
contain that letter under the sign

√
. This result is one

which often occurs, and it must be recollected that when
b2 − 4ac = 0, ax2 − bx+ c is a perfect square.

III. When b2 is less than 4ac, or when b2−4ac is negative
and 4ac − b2 positive, let 4ac − b2 = k2, and equation (3)
becomes

4ay = (2ax− b)2 + k2.

In this case no value of x can ever make y = 0, for the
equation v2 + w2 = 0 indicates that v2 is equal to w2 with
a contrary sign, which cannot be, since all squares have the
same sign. The values of x are said, in this case, to be
impossible, and it indicates that there is something absurd
or contradictory in the conditions of a problem which leads
to such a result.

Having found that whenever

ax2 − bx+ c = a(x−m)(x− n),

it follows that ax2 + bx+ c = a(x+m)(x+n), we know that
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(1) when b2 is greater than 4ac,

ax2 + bx+ c = a

(
x+

b+
√
b2 − 4ac

2a

)(
x+

b−
√
b2 − 4ac

2a

)
;

(2) when b2 = 4ac,

ax2 + bx+ c = a

(
x+

b

2a

)2

,

and y is a perfect square;
(3) when b2 is less than 4ac, ax2+bx+c cannot be divided

into factors.
Now, let

y = ax2 − bx− c. (1)

As before,

4ay = 4a2x2 − 4abx+ b2 − 4ac− b2

= (2ax− b)2 − (b2 + 4ac). (2)

Let b2 + 4ac = k2. Then

4ay = (2ax− b)2 − k2. (3)

Therefore y is 0 when (2ax − b)2 = k2, or when
2ax− b = ±k.

That is,

m =
b+ k

2a
=
b+
√
b2 + 4ac

2a
,

n =
b− k

2a
=
b−
√
b2 + 4ac

2a
.
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Now, because b2 is less than b2 + 4ac, b is less than√
b2 + 4ac, therefore n is a negative quantity. Leaving, for

the present, the consideration of the negative quantity, we
may decompose (3) into factors by means of the general for-
mula

p2 − q2 = (p− q)(p+ q),

which gives

4ay = (2ax− b− k)(2ax− b+ k)

= 4a2
(
x− k + b

2a

)(
x+

k − b
2a

)
,

from which y or

ax2− bx− c = a

(
x−
√
b2 + 4ac+ b

2a

)(
x+

√
b2 + 4ac− b

2a

)
.

Therefore, from what has been proved before,

ax2 + bx− c = a

(
x+

√
b2 + 4ac+ b

2a

)(
x−
√
b2 + 4ac− b

2a

)
.

The following are some examples, of the truth of which
the student should satisfy himself, both by reference to the
ones just established, and by actual multiplication:

2x2 − 7x+ 3 = 2

(
x− 7 +

√
49− 24

4

)(
x− 7−

√
49− 24

4

)
= 2(x− 3)(x− 1

2
),
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3x2 − 6x+ 1 = 3

(
x− 3 +

√
6

3

)(
x− 3−

√
6

3

)
,∗

51
2
x2 − 22x+ 22 = 51

2
(x− 2)2,

5x2 + 9x− 7 = 5

(
x+

√
221 + 9

10

)(
x−
√

221− 9

10

)
.

If we collect together the different results at which we
have arrived, to which species of tabulation the student
should take care to accustom himself, we have the following:

ax2 + bx+ c

= a

(
x+

b+
√
b2 − 4ac

2a

)(
x+

b−
√
b2 − 4ac

2a

)
, (A)

ax2 − bx+ c

= a

(
x− b+

√
b2 − 4ac

2a

)(
x− b−

√
b2 − 4ac

2a

)
, (B)

ax2 + bx− c

= a

(
x+

√
b2 + 4ac+ b

2a

)(
x−
√
b2 + 4ac− b

2a

)
, (C)

∗Recollect that
√

24 =
√

6× 4 =
√

6×
√

4 = 2
√

6.
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ax2 − bx− c

= a

(
x−
√
b2 + 4ac+ b

2a

)(
x+

√
b2 + 4ac− b

2a

)
. (D)

These four cases may be contained in one, if we apply
those rules for the change of signs which we have already
established. For example, the first side of (C) is made from
that of (A) by changing the sign of c; the second side of (C)
is made from that of (A) in the same way. We have also seen
the necessity of taking into account the negative quantities
which satisfy an equation, as well as the positive ones; if we
take these into account, each of the four forms of ax2 + bx+
c can be made equal to nothing by two values of x. For
example, in (1), when

ax2 + bx+ c = 0,

either x+
b−
√
b2 − 4ac

2a
= 0

or x+
b+
√
b2 − 4ac

2a
= 0.

If we call the values of x derived from the equations m and n,
we find that

m =
−b+

√
b2 − 4ac

2a
, n =

−b−
√
b2 − 4ac

2a
. (A′)
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In the cases marked (B), (C), and (D), the results are

m =
b+
√
b2 − 4ac

2a
, n =

b−
√
b2 − 4ac

2a
, (B′)

m =
−b+

√
b2 + 4ac

2a
, n =

−b−
√
b2 + 4ac

2a
, (C ′)

m =
b+
√
b2 + 4ac

2a
, n =

b−
√
b2 + 4ac

2a
, (D′)

and in all the four cases the form of ax2 + bx + c which is
used, is the same as the corresponding form of

a(x−m)(x− n)

and the following results may be easily obtained. In (A′)
both m and n, if they exist at all, are negative. I say, if they
exist at all, because it has been shown that if b2 − 4ac is
negative, the quantity ax2 + bx + c cannot be divided into
factors at all, since

√
b2 − 4ac is then no algebraical quantity,

either positive or negative.
In (B′) both, if they exist at all, are positive.
In (C ′) there are always real values for m and n, since

b2 + 4ac is always positive; one of these values is positive,
and the other negative, and the negative one is numerically
the greatest.

In (D′) there are also real values of m and n, one positive
and the other negative, of which the positive one is numer-
ically the greatest. Before proceeding any further, we must
notice an extension of a phrase which is usually adopted.
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The words greater and less, as applied to numbers, offer no
difficulty, and from them we deduce, that if a be greater
than b, a− c is greater than b− c, as long as these subtrac-
tions are possible, that is, as long as c can be taken both
from a and b. This is the only case which was considered
when the rule was made, but in extending the meaning of
the word subtraction, and using the symbol −3 to stand for
5−8, the principle that if a be greater than b, a−c is greater
than b − c, leads to the following results. Since 6 is greater
than 4, 6−12 is greater than 4−12, or −6 is greater than −8;
again 6 − 6 is greater than 4 − 6, or 0 is greater than −2.
These results, particularly the last, are absurd, as has been
noticed, if we continue to mean by the terms greater and
less, nothing more than is usually meant by them in arith-
metic; but in extending the meaning of one term, we must
extend the meaning of all which are connected with it, and
we are obliged to apply the terms greater and less in the fol-
lowing way. Of two algebraical quantities with the same or
different signs, that one is the greater which, when both are
connected with a number numerically greater than either of
them, gives the greater result. Thus −6 is said to be greater
than −8, because 20− 6 is greater than 20− 8, 0 is greater
than −4, because 6 + 0 is greater than 6− 4; +12 is greater
than −30, because 40+12 is greater than 40−30. Neverthe-
less −30 is said to be numerically greater than +12, because
the number contained in the first is greater than that in the
second. For this reason it was said, that in (C), the negative
quantity was numerically greater, than the positive, because
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any positive quantity is in algebra called greater than any
negative one, even though the number contained in the first
should be less than that in the second. In the same way
−14 is said to lie between +3 and −20, being less than the
first and greater than the second. The advantage of these
extensions is the same as that of others; the disadvantage
attached to them, which it is not fair to disguise, is that,
if used without proper caution, they lead the student into
erroneous notions, which some elementary works, far from
destroying, confirm, and even render necessary, by adopting
these very notions as definitions; as for example, when they
say that a negative quantity is one which is less than noth-
ing; as if there could be such a thing, the usual meaning of
the word less being considered, and as if the student had an
idea of a quantity less than nothing already in his mind, to
which it was only necessary to give a name.

The product (x−m)(x−n) is positive when (x−m) and
(x−n) have the same, and negative when they have different
signs. This last can never happen except when x lies between
m and n, that is, when x is algebraically greater than the
one, and less than the other. The following table will exhibit
this, where different products are taken with various signs of
m and n, and three values are given to x one after the other,
the first of which is less than both m and n, the second
between both, and the third greater than both.

The student will see the reason of this, and perform a
useful exercise in making two or three tables of this descrip-
tion for himself. The result is that (x−m)(x−n) is negative
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PRODUCT. VALUE OF x.
VALUE OF THE
PRODUCT WITH

ITS SIGN.

(x− 4)(x− 7) + 1 +18
m = +4 + 5 − 2
n = +7 +10 +18
(x+ 10)(x− 3) −12 +30
m = −10 − 7 −30
n = +3 + 4 +14
(x+ 2)(x+ 12) −13 +11
m = −2 − 6 −24
n = −12 − 1 +11

when x lies between m and n; is nothing when x is either
equal to m or to n, and positive when x is greater than both,
or less than both. Consequently, a(x − m)(x − n) has the
same sign as a when x is greater than both m and n, or less
than both, and a different sign from a when x lies between
both. But whatever may be the signs of a, b, and c, if there
are two quantities m and n, which make

ax2 + bx+ c = a(x−m)(x− n),

that is, if the equation ax2 + bx + c = 0 has real roots, the
expression ax2 + bx+ c always has the same sign as a for all
values of x, except when x lies between these roots.

It only remains to consider those cases in which
ax2 + bx + c cannot be decomposed into different factors,
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which happens whenever b2 − 4ac is 0, or negative. In the
first case when b2 − 4ac = 0, we have

ax2 + bx+ c = a

(
x+

b

2a

)2

,

ax2 − bx+ c = a

(
x− b

2a

)2

,

and as these expressions are composed of factors, one of
which is a square, and therefore positive, they have always
the same sign as the other factor, which is a. When
b2− 4ac is negative, we have proved that if y = ax2± bx+ c,
4ay = (2ax ± b)2 + k2, where k2 = 4ac − b2, and therefore
4ay being the sum of two squares is always positive, that
is, ax2 ± bx + c has the same sign as a, whatever may
be the value of x. When c = 0, the expression becomes
ax2 + bx, or x(ax+ b), which is nothing either when x = 0,

or when ax + b = 0 and x = − b
a

; the general expressions

for m and n become in this case
−b+

√
b2

2a
and

−b−
√
b2

2a
,

which give the same results.
When b = 0, the expression is reduced to ax2 + c = 0,

which is nothing when x = ±
√
− c
a

, which is not possible,

except when c and a have different signs. In this case, that
is, when the expression assumes the form ax2 − c, it is the
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same as

a

(
x−

√
c

a

)(
x+

√
c

a

)
.

The same result might be deduced by making b = 0 in the
general expressions for m and n.

When a = 0, the expression is reduced to bx+ c, which
is made equal to nothing by one value of x only, that

is −c
b
. If we take the general expressions for m and n,

and make a = 0 in them, that is, in
−b+

√
b2 − 4ac

2a
, and

−b−
√
b2 − 4ac

2a
, we find as the results

0

0
and −2b

0
. These

have been already explained. The first may either indicate
that any value of x will solve the problem which produced
the equation ax2 + bx + c = 0, or that we have applied a
rule to a case which was not contemplated in its formation,
and have thereby created a factor in the numerator and
denominator of x, which, in attempting to apply the rule,
becomes equal to nothing. The student is referred to the
problem of the two couriers, solved in the preceding part of
this treatise. The latter is evidently the case here, because
in returning to the original equation, we find it reduced to

bx+ c = 0, which gives a rational value for x, namely, −c
b
.

The second value, or −2b

0
, which in algebraical language

is called infinite, may indicate, that though there is no

other value of x, except −c
b
, which solves the equation,
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still that the greater the number which is taken for x, the
more nearly is a second solution obtained. The use of
these expressions is to point out the cases in which there is
anything remarkable in the general problem; to the problem
itself we must resort for further explanation.

The importance of the investigations connected with the
expression ax2 + bx+ c, can hardly be overrated, at least to
those students who pursue mathematics to any extent. In
the higher branches, great familiarity with these results is
indispensable. The student is therefore recommended not to
proceed until he has completely mastered the details here
given, which have been hitherto too much neglected in En-
glish works on algebra.

In solving equations of the second degree, we have ob-
tained a new species of result, which indicates that the prob-
lem cannot be solved at all. We refer to those results which
contain the square root of a negative quantity. We find that
by multiplication the squares of c − d and of d − c are the
same, both being c2 − 2cd + d2. Now either c − d or d − c
is positive, and since they both have the same square, it ap-
pears that the squares of all quantities, whether positive or
negative, are positive. It is therefore absurd to suppose that
there is any quantity which x can represent, and which sat-
isfies the equation x2 = −a2, since that would be supposing
that x2, a positive quantity, is equal to the negative quan-
tity −a2. The solution is then said to be impossible, and it
will be easy to show an instance in which such a result is
obtained, and also to show that it arises from the absurdity
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of the problem.
Let a number a be divided into any two parts, one of

which is greater than the half, and the other less. Call the

first of these
a

2
+x, then the second must be

a

2
−x, since the

sum of both parts must be a. Multiply these parts together,
which gives(

a

2
+ x

)(
a

2
− x
)
, or

(
a

2

)2

− x2.

As x diminishes, this product increases, and is greatest of
all when x = 0, that is, when the two parts, into which a is

divided, are
a

2
and

a

2
, or when the number a is halved. In this

case the product of the parts is
a

2
× a

2
, or

a2

4
, and a number a

can never be divided into two parts whose product is greater

than
a2

4
. This being premised, suppose that we attempt to

divide the number a into two parts, whose product is b. Let
x be one of these parts, then a − x is the other, and their
product is ax− x2.

We have, therefore,

ax− x2 = b,

or x2 − ax+ b = 0.

If we solve this equation, the two roots are the two parts
required, since from what we have proved of the expression
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x2 − ax + b the sum of the roots is a and their product b.
These roots are

a

2
+

√
a2

4
− b and

a

2
−
√
a2

4
− b,∗

which are impossible when
a2

4
− b is negative, or when

b is greater than
a2

4
, which agrees with what has just been

proved, that no number is capable of being divided into two

parts whose product is greater than
a2

4
.

We have shown the symbol
√
−a to be void of meaning,

or rather self-contradictory and absurd. Nevertheless, by
means of such symbols, a part of algebra is established which
is of great utility. It depends upon the fact, which must be
verified by experience, that the common rules of algebra may
be applied to these expressions without leading to any false
results. An appeal to experience of this nature appears to
be contrary to the first principles laid down at the beginning
of this work. We cannot deny that it is so in reality, but it
must be recollected that this is but a small and isolated part
of an immense subject, to all other branches of which these
principles apply in their fullest extent. There have not been
wanting some to assert that these symbols may be used as

∗The general expressions for m and n give
a±
√
a2 − 4b

2
as the

roots of x2 − ax+ b = 0.
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rationally as any others, and that the results derived from
them are as conclusive as any reasoning could make them.
I leave the student to discuss this question as soon as he
has acquired sufficient knowledge to understand the various
arguments: at present let him proceed with the subject as a
part of the mechanism of algebra, on the assurance that by
careful attention to the rules laid down he can never be led to
any incorrect result. The simple rule is, apply all those rules
to such expressions as

√
−a, a+

√
−b, etc., which have been

proved to hold good for such quantities as
√
a, a +

√
b, etc.

Such expressions as the first of these are called imaginary,
to distinguish them from the second, which are called real ;
and it must always be recollected that there is no quantity,
either positive or negative, which an imaginary expression
can represent.

It is usual to write such symbols as
√
−b in a different

form. To the equation −b = b × (−1) apply the rule
derived from the equation

√
xy =

√
x × √y, which gives√

−b =
√
b×
√
−1, of which the first factor is real and the

second imaginary. Let
√
b = c, then

√
−b = c

√
−1. In this

way all expressions may be so arranged that
√
−1 shall be

the only imaginary quantity which appears in them. Of
this reduction the following are examples:

√
−24 =

√
24
√
−1 = 2

√
6
√
−1,

√
−a2 = a

√
−1,

√
−a×

√
−a = −a,
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√
2ab− a2 − b2 = (a− b)

√
−1,

√
−a2 ×

√
−b2 = a

√
−1× b

√
−1 = −ab.

The following tables exhibit other applications of the
rules:

c = a
√
−1 c7 = −a7

√
−1,

c2 = −a2 c8 = a8, etc.,

c3 = −a3
√
−1 c4n−3 = a4n−3

√
−1,

c4 = a4 c4n−2 = −a4n−2,
c5 = a5

√
−1 c4n−1 = −a4n−1

√
−1,

c6 = −a6 c4n = a4n.

The powers of such an expression as a
√
−1 are therefore

alternately real and imaginary, and are positive and negative
in pairs.

(a+ b
√
−1)2 = a2 − b2 + 2ab

√
−1,

(a− b
√
−1)2 = a2 − b2 − 2ab

√
−1,

(a+ b
√
−1)(a− b

√
−1) = a2 + b2,

a+ b
√
−1

a− b
√
−1

=
a2 − b2

a2 + b2
+

2ab
√
−1

a2 + b2
,

(a+ b
√
−1)(c+ d

√
−1) = ac− bd+ (ad+ bc)

√
−1.

Let the roots of the equation ax2 +bx+c be impossible, that
is, let b2 − 4ac be negative and equal to −k2. Its roots, as
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derived from the rules established when b2−4ac was positive,
are

−b+
√
−k2

2a
and

−b−
√
−k2

2a
, or

− b

2a
+

k

2a

√
−1 and − b

2a
− k

2a

√
−1.

Take either of these instead of x; for example, let

x = − b

2a
+

k

2a

√
−1.

Then ax2 =
b2

4a
− bk

2a

√
−1− k2

4a
,

bx = − b
2

2a
+
bk

2a

√
−1,

c = c.

Therefore, ax2+bx+c =
b2

4a
− k

2

4a
− b

2

4a
+c, in which, if 4ac−b2

be substituted instead of k2, the result is 0. It appears, then,
that the imaginary expressions which take the place of the
roots when b2 − 4ac is negative, will, if the ordinary rules
be applied, produce the same results as the roots. They
are thence called imaginary roots, and we say that every
equation of the second degree has two roots, either both
real or both imaginary. It is generally true, that wherever
an imaginary expression occurs the same results will follow
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from the application of these expressions in any process as
would have followed had the proposed problem been possible
and its solution real.

When an equation arises in which imaginary and real
expressions occur together, such as a + b

√
−1 = c + d

√
−1,

when all the terms are transferred on one side, the part which
is real and that which is imaginary must each of them be
equal to nothing. The equation just given when its left side
is transposed becomes a − c + (b − d)

√
−1 = 0. Now, if

b is not equal to d, let b − d = e; then a − c + e
√
−1 = 0,

and
√
−1 =

c− a
e

; that is, an imaginary expression is equal

to a real one, which is absurd. Therefore, b = d and the
original equation is thereby reduced to a = c. This goes on
the supposition that a, b, c, and d are real. If they are not

so there is no necessary absurdity in
√
−1 =

c− a
e

. If, then,

we wish to express that two possible quantities a and b are
respectively equal to two others c and d, it may be done at
once by the equation

a+ b
√
−1 = c+ d

√
−1.

The imaginary expression
√
−a and the negative expres-

sion −b have this resemblance, that either of them occurring
as the solution of a problem indicates some inconsistency
or absurdity. As far as real meaning is concerned, both are
equally imaginary, since 0 − a is as inconceivable as

√
−a.

What, then, is the difference of signification? The following
problems will elucidate this. A father is fifty-six, and his son
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twenty-nine years old: when will the father be twice as old as
the son? Let this happen x years from the present time; then
the age of the father will be 56+x, and that of the son 29+x;
and therefore, 56 +x = 2(29 +x) = 58 + 2x, or x = −2. The
result is absurd; nevertheless, if in the equation we change
the sign of x throughout it becomes 56 − x = 58 − 2x, or
x = 2. This equation is the one belonging to the problem:
a father is 56 and his son 29 years old; when was the father
twice as old as the son? the answer to which is, two years
ago. In this case the negative sign arises from too great a
limitation in the terms of the problem, which should have de-
manded how many years have elapsed or will elapse before
the father is twice as old as his son?

Again, suppose the problem had been given in this last-
mentioned way. In order to form an equation, it will be
necessary either to suppose the event past or future. If of
the two suppositions we choose the wrong one, this error will
be pointed out by the negative form of the result. In this case
the negative result will arise from a mistake in reducing the
problem to an equation. In either case, however, the result
may be interpreted, and a rational answer to the question
may be given. This, however, is not the case in a problem,
the result of which is imaginary. Take the instance above
solved, in which it is required to divide a into two parts,
whose product is b. The resulting equation is

x2 − ax+ b = 0, or x =
a

2
±
√
a2

4
− b,
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the roots of which are imaginary when b is greater than
a2

4
.

If we change the sign of x in the equation it becomes

x2 + ax+ b = 0, or x = −a
2
±
√
a2

4
− b,

and the roots of the second are imaginary, if those of the
first are so. There is, then, this distinct difference between
the negative and the imaginary result. When the answer
to a problem is negative, by changing the sign of x in the
equation which produced that result, we may either discover
an error in the method of forming that equation or show
that the question of the problem is too limited, and may be
extended so as to admit of a satisfactory answer. When the
answer to a problem is imaginary this is not the case.



CHAPTER XI.

ON ROOTS IN GENERAL, AND LOGARITHMS.

The meaning of the terms square root, cube root, fourth root,
etc., has already been defined. We now proceed to the dif-
ficulties attending the connexion of the roots of a with the
powers of a. The following table will refresh the memory of
the student with respect to the meaning of the terms:

NAME OF x. NAME OF x.

Square of a x = aa Square Root of a xx = a
Cube of a x = aaa Cube Root of a xxx = a
Fourth Power of a x = aaaa Fourth Root of a xxxx = a
Fifth Power of a x = aaaaa Fifth Root of a xxxxx = a

The different powers and roots of a have hitherto been
expressed in the following way:

Powers a2 a3 a4 a5 . . . am . . . am+n, etc.

Roots 2
√
a∗ 3
√
a 4
√
a 5
√
a m
√
a m+n

√
a, etc.

which series are connected together by the following equa-
tion, ( n

√
a)n = a.

There has hitherto been no connexion between the man-
ner of expressing powers and roots, and we have found no
properties which are common both to powers and roots.
Nevertheless, by the extension of rules, we shall be led to

∗The 2 is usually omitted, and the square root is written thus
√
a.
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a method of denoting the raising of powers, the extraction
of roots, and combinations of the two, to which algebra has
been most peculiarly indebted, and the importance of which
will justify the length at which it will be treated here.

Suppose it required to find the cube of 2a2b3; that is, to
find 2a2b3 × 2a2b3 × 2a2b3. The common rules of multipli-
cation give, as the result, 8a6b9, which is expressed in the
following equation,

(2a2b3)3 = 8a6b9.

Similarly

(3a4b3)4 = 81a16b12,(
1

2

b4

a

)6

=
1

64

b24

a6
;

and the general rule by which any single term may be raised
to the power whose index is n, is: Raise the coefficient to the
power n, and multiply the index of every letter by n, that is,

(apbqcr)n = anpbnqcnr.

In extracting the root of any simple term, we are guided
by the manner in which the corresponding power is found.
The rule is: Extract the required root of the coefficient, and
divide the index of each letter by the index of the root.
Where these divisions do not give whole numbers as the quo-
tients, the expression whose root is to be extracted does not
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admit of the extraction without the introduction of some new
symbol. For example, extract the fourth root of 16a12b8c4,
or find

4
√

16a12b8c4. The expression here given is the same as
the following:

2a3b2c× 2a3b2c× 2a3b2c× 2a3b2c,

or (2a3b2c)4, the fourth root of which is 2a3b2c, conformably
to the rule.

Any root of a product, such as AB, may be extracted
by extracting the root of each of its factors. Thus, 3

√
AB =

3
√
A 3
√
B. For, raise 3

√
A 3
√
B to the third power, the result of

which is,

3
√
A

3
√
B × 3

√
A

3
√
B × 3

√
A

3
√
B,

or
3
√
A

3
√
A

3
√
A× 3
√
B

3
√
B

3
√
B,

or AB.

In the same way it may be proved generally, that
n
√
ABC = n

√
A n
√
B n
√
C. The most simple way of representing

any root of any expression is the dividing it into two factors,
one of which is the highest which it admits of whose root can
be extracted by the rule just given. For example, in finding
3
√

16a4b7c we must observe that 16 is 8× 2, a4 is a3× a, b7 is
b6 × b, and the expression is 8a3b6 × 2abc, the cube root of
which, found by extracting the cube root of each factor, is
2ab2 3
√

2abc. The second factor has no cube root which can be
expressed by means of the symbols hitherto used, but when
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the numbers which a, b, and c stand for are known, 3
√

2abc
maybe found either exactly, or, when that is not possible, by
approximation.

We find that a power of a power is found by affixing,
as an index, the product of the indices of the two powers.
Thus (a2)4 or a2 × a2 × a2 × a2 is a8, or a4×2. This is the
same as (a4)2, which is a4 × a4, or a8. Therefore, generally
(am)n = (an)m = amn. In the same manner, a root of a root
is the root whose index is the product of the indices of the
two roots. Thus

3

√
2
√
a = 6
√
a.

For since a = 6
√
a 6
√
a 6
√
a × 6
√
a 6
√
a 6
√
a, the square root of a

is 6
√
a 6
√
a 6
√
a, the cube root of which is 3

√
a. This is the same

as 2
√

3
√
a, and generally

m

√
n
√
a =

n

√
m
√
a = mn

√
a.

Again, when a power is raised and a root extracted, it
is indifferent which is done first. Thus

3
√
a2 is the same

thing as ( 3
√
a)2. For since a2 = a× a, the cube root may be

found by taking the cube root of each of these factors, that
is

3
√
a2 = 3

√
a× 3
√
a = ( 3

√
a)2, and generally

n
√
am = ( n

√
a)m.

In the expression n
√
am, n and m may both be multiplied

by any number, without altering the expression, that is

np
√
amp = ( n

√
a)m.
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To prove this, recollect that

np
√
amp =

n

√
p
√
amp.

But amp is (am)p, and by definition p
√

(am)p = am. Therefore
np
√
amp = n

√
am. This multiplication is equivalent to raising a

power of n
√
am, and afterwards reducing the result to its for-

mer value, by extracting the correspending root, in the same

way as
mp

np
signifies that

m

n
has been multiplied by p, and

the result has been restored to its former value by dividing
it by p.

The following equations should be established by the stu-
dent to familiarise him with the notation and principles hith-
erto laid down.

n
√

(a− b)n−2 × 3n
√

(a− b)6 = a− b,

n+m
√

(a+ b)n−m × n−m
√

(a− b)n+m = (a2 − b2)
(

n−m
√
a− b

n+m
√
a+ b

)2m

,

n

√
ab

cd
=

n
√
ab

n
√
cd

=
n
√
a n
√
b

n
√
c n
√
d

= n

√
a

c
× n

√
b

d
,

n

√
a

b
=

n
√
abn−1

b
=

a
n
√
an−1b

.

The quantity n
√
am is a simple expression when m can be

divided by n, without remainder, for example
2
√
a12 = a6,

5
√
a20 = a4, and in general, whenever m can be divided by n
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without remainder, n
√
am = a

m
n . This symbol, viz., a letter

which has an exponent appearing in a fractional form, has
not hitherto been used. We may give it any meaning which

we please, provided it be such that when
m

n
is fractional in

form only, and not in reality, that is, whenm is divisible by n,
and the quotient is p, a

m
n shall stand for ap, or aaa . . . (p).∗ It

will be convenient to let a
m
n always stand for n

√
am, in which

case the condition alluded to is fulfilled, since when
m

n
= p,

a
m
n or n

√
am = ap. This extension of a rule, the advantages of

which will soon be apparent, is exemplified in the following
table, which will familiarise the student with the different
cases of this new notation:

a
1
2 stands for

2
√
a1 or

√
a,

a
1
3 stands for 3

√
a,

a
1
4 stands for 4

√
a,

a
2
3 stands for

3
√
a2 or ( 3

√
a)2,

a
7
5 stands for

5
√
a7 or ( 5

√
a)7,

a
m+n
m−n stands for

m−n
√
am+n,

∗This is a notation in common use, and means that aaa . . . is to be
continued until it has been repeated p times. Thus

a+ a+ a+ . . . (p) = pa,

a× a× a× . . . (p) = ap.
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(p+ q)
m−n

2 stands for
√

(p+ q)m−n,

(c
m
n )

p
q stands for

q

√
( n
√
cm)p,

(a
1
n )

1
q stands for

q

√
n
√
a.

The results at which we have arrived in this chapter,
translated into this new language, are as follows:

(x
1
n )n = (xn)

1
n = x, (1)

(ABC)
1
n = A

1
nB

1
nC

1
n , (2)

(a
1
n )

1
q = a

1
nq , (3)

(am)
1
n = (a

1
n )m = a

m
n , (4)

a
m
n = a

mp
nq . (5)

The advantages resulting from the adoption of this nota-
tion, are, (1) that time is saved in writing algebraical expres-
sions; (2) all rules which have been shown to hold good for
performing operations upon such quantities as am, hold good
also for performing the same operations upon such quanti-
ties as a

m
n , in which the exponents are fractional. The truth

of this last assertion we proceed to establish.
Suppose it required to multiply together a

m
n and a

l
n , or

n
√
am and

n
√
al. From (2) this is n

√
am × al, or

n
√
am+l, or a

m+l
n .

Suppose it now required to multiply a
m
n and a

p
q . From (5)

the first of these is the same as a
mq
nq , and the second is the

same as a
np
nq . The product of these by the last case is a

mq+np
nq ,
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or nq
√
amq+np. But

mq + np

nq
is
m

n
+
p

q
, and therefore

a
m
n × a

p
q = a

m
n
+ p

q . (6)

This is the same result as was obtained when the indices
were whole numbers. The rule is: To multiply together two
powers of the same quantity, add the indices, and make the
sum the index of the product. It follows in the same way
that

a
m
n

a
p
q

= a
m
n
− p

q = a
mq−np

nq =
nq
√
amq−np,

or, to divide one power of a quantity by another, subtract
the index of the divisor from that of the dividend, and make
the difference the index of the result.

Suppose it required to find (a
m
n )p. It is evident

that a
m
n × am

n = a
m
n
+m

n = a
2m
n , or (a

m
n )2 = a

2m
n . Similarly

(a
m
n )3 = a

3m
n , and so on. Therefore (a

m
n )p = a

mp
n .

Again to find (a
m
n )

1
q , or

q
√
a

m
n . Let this be a

x
y . Then

a
x
y =

q
√
a

m
n , or (a

x
y )q = a

m
n , or a

xq
y = a

m
n . Therefore

xq

y
=
m

n
,

or
x

y
=
m

nq
, and (a

m
n )

1
q = a

m
nq .

Again to find (a
m
n )

p
q , or q

√
(a

m
n )p. Apply the last two

rules, and it appears that (a
m
n )p = a

mp
n , and

q
√
a

mp
n = a

mp
nq .

Therefore (a
m
n )

p
q = a

mp
nq = a

m
n
× p

q .
The rule is: To raise one power of a quantity to another

power, multiply the indices of the two powers together, and
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make the product the index of the result. All these rules
are exactly those which have been shown to hold good when
the indices are whole numbers. But there still remains one
remarkable extension, which will complete this subject.

We have proved that whether m and n be whole or frac-

tional numbers,
an

am
= am−n. The only cases which have

been considered in forming this rule are those in which m is
greater than n, being the only ones in which the subtrac-
tion indicated is possible. If we apply the rule to any other
case, a new symbol is produced, which we proceed to con-

sider. For example, suppose it required to find
a3

a7
. If we

apply the rule, we find the result a3−7, or a−4, for which we
have hitherto no meaning. As in former cases, we must ap-
ply other methods to the solution of this case, and when we
have obtained a rational result, a−4 may be used in future

to stand for this result. Now the fraction
a3

a7
is the same

as
1

a4
, which is obtained by dividing both its numerator and

denominator by a3. Therefore
1

a4
is the rational result, for

which we have obtained a−4 by applying a rule in too exten-

sive a manner. Nevertheless, if a−4 be made to stand for
1

a4
,

and a−m for
1

am
, the rule will always give correct results, and

the general rules for multiplication, division, and raising of
powers remain the same as before. For example, a−m × a−n
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is
1

am
× 1

an
, or

1

aman
, which is

1

am+n
, or a−(m+n), or a−m−n.

Similarly

a−m

a−n
, or

1

am
1

an

, is
an

am
, or an−m, or a−m−(−n).

Again

(am)−n is
1

(am)n
, or

1

amn
, or a−mn,

and so on.
It has before been shown that a0 stands for 1 whenever it

occurs in the solution of a problem. We can now, therefore,
assign a meaning to the expression am, whether m be whole
or fractional, positive, negative, or nothing, and in all these
cases the following rules hold good:

am × an = am+n,

am

an
= am−n = ama−n,

(am)n = (an)m = amn.

The student can now understand the meaning of such an
expression as 10.301, where the index or exponent is a decimal
fraction. Since .301 is 301

1000
, this stands for 1000

√
(10)301, an

expression of which it would be impossible to calculate the
value by any method which the student has hitherto been
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taught, but which may be shown by other processes to be
very nearly equal to 2.

Before proceeding to the practice of logarithmic calcula-
tions, the student should thoroughly understand the mean-
ing of fractional and negative indices, and be familiar with
the operations performed by means of them. He should work
many examples of multiplication and division in which they
occur, for which he can have recourse to any elementary
work. The rules are the same as those to which he has been
accustomed, substituting the addition, subtraction, and so
forth, of fractional indices, instead of these which are whole
numbers.

In order to make use of logarithms, he must provide him-
self with a table. Either of the following works may be rec-
ommended to him:

[1. Bruhns, A New Manual of Logarithms to Seven Places
of Decimals (English preface, Leipsic).

2. Schrön, Seven-Figure Logarithms (English edition,
London).

3. Bremiker’s various editions of Vega’s Logarithmic Ta-
bles (Weidmann, Berlin). With English preface.

4. Callet, Tables portatives de Logarithmes. (Last im-
pression, Paris, 1890).

5. V. Caillet, Tables des Logarithmes et Co-Logarithmes
des nombres (Paris).

6. Hutton’s Mathematical Tables (London).
7. Chambers’s Mathematical Tables (Edinburgh).
8. The American six-figure Tables of Jones, of Wells, and
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of Haskell.
For fuller bibliographical information on the subject of

tables of logarithms, see the Encyclopædia Britannica, Arti-
cle “Tables,” Vol. XXIII.—Ed.]∗

The limits of this treatise will not allow us to enter into
the subject of the definition, theory, and use of logarithms,
which will be found fully treated in the standard text-books
of Arithmetic, Algebra, and Trigonometry. There is, how-
ever, one consideration connected with the tables, which, as
it involves a principle of frequent application, it will be well
to explain here. On looking into any table of logarithms it
will be seen, that for a series of numbers the logarithms in-
crease in arithmetical progression, as far as the first seven
places of decimals are concerned; that is, the difference be-
tween the successive logarithms continues the same. For ex-

∗The original text of De Morgan, for which the above paragraph
has been substituted, reads as follows: “Either of the following works
may be recommended to him: (1) Taylor’s Logarithms. (2) Hutton’s
Logarithms. (3) Babbage, Logarithms of Numbers; Callet, Logarithms
of Sines, Cosines, etc. (4) Bagay, Tables Astronomiques et Hydro-
graphiques. The first and last of these are large works, calculated for
the most accurate operations of spherical trigonometry and astron-
omy. The second and third are better suited to the ordinary student.
For those who require a pocket volume there are Lalande’s and Has-
sler’s Tables, the first published in France, the second in the United
States.”—Ed.
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ample, the following is found from any tables:

log 41713 = 4.6202714,

log 41714 = 4.6202818,

log 41715 = 4.6202922.

The difference of these successive logarithms and of almost
all others in the same page is .0000104. Therefore in this the
addition of 1 to the number gives an addition of .0000104
to the logarithm. It is a general rule that when one quan-
tity depends for its value upon another, as a logarithm does
upon its number, or an algebraical expression, such as x2 +x
upon the letter or letters which it contains, if a very small
addition be made to the value of one of these letters, in con-
sequence of which the expression itself is increased or dimin-
ished; generally speaking, the increment∗ of the expression
will be very nearly proportional to the increment of the letter
whose value is increased, and the more nearly so the smaller
is the increment of the letter. We proceed to illustrate this.
The product of two fractions, each of which is less than unity,
is itself less than either of its factors. Therefore the square,
cube, etc., of a fraction less than unity decrease, and the
smaller the fraction is the more rapid is that decrease, as the

∗When any quantity is increased, the quantity by which it is in-
creased is called its increment.
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following examples will show:

Let x = .01, Let x = .00001,

x2 = .0001, x2 = .0000000001,

x3 = .000001, x3 = .000000000000001,

etc. etc.

Now quantities are compared, not by the actual differ-
ence which exists between them, but by the number of times
which one contains the other, and, of two quantities which
are both very small, one may be very great as compared with
the other. In the second example x2 and x3 are both small
fractions when compared with unity; nevertheless, x2 is very
great when compared with x3, being 100,000 times its mag-
nitude. This use of the words small and great sometimes
embarrasses the beginner; nevertheless, on consideration, it
will appear to be very similar to the sense in which they are
used in common life. We do not form our ideas of smallness
or greatness from the actual numbers which are contained
in a collection, but from the proportion which the numbers
bear to those which are usually found in similar collections.
Thus of 1000 men we should say, if they lived in one village,
that it was extremely large; if they formed a regiment, that
it was rather large; if an army, that it was utterly insignif-
icant in point of numbers. Hence, in such an expression as
Ah+Bh2+Ch3, we may, if h is very small, reject Bh2+Ch3,
as being very small compared with Ah. An error will thus
be committed, but a very small one only, and which becomes
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smaller as h becomes smaller.
Let us take any algebraical expression, such as x2 + x,

and suppose that x is increased by a very small quantity h.
The expression then becomes (x + h)2 + (x + h), or
x2 + x + (2x + 1)h + h2. But it was x2 + x; therefore, in
consequence of x receiving the increment h, x2 + x has
received the increment (2x+1)h+h2, for which (2x+1)hmay
be written, since h is very small. This is proportional
to h, since, if h were doubled, (2x+ 1)h would be doubled;
also, if the first were halved the second would be halved,
etc. In general, if y is a quantity which contains x, and if
x be changed into x + h, y is changed into a quantity of
the form y + Ah+ Bh2 + Ch3 + etc.; that is, y receives an
increment of the form Ah+ Bh2 + Ch3 + etc. If h be very
small, this may, without sensible error, be reduced to its
first term, viz., Ah, which is proportional to h. The general
proof of this proposition belongs to a higher department of
mathematics; nevertheless, the student may observe that it
holds good in all the instances which occur in elementary
treatises on arithmetic and algebra.

For example:

(x+ h)m = xm +mxm−1h+m
m− 1

2
xm−2h2 + etc.

Here A = mxm−1, B = m
m− 1

2
xm−2, etc.; and if h be very

small, (x+ h)m = xm +mxm−1h, nearly.

Again, eh = 1 + h +
h2

2
+

h3

2 · 3
+ etc. Therefore, ex × eh
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or ex+h = ex + exh +
ex

2
h2 + etc. And if h be very small,

ex+h = ex + exh, nearly.
Again, log(1 + n′) = M(n′ − 1

2
n′2 + 1

3
n′3 − etc.). To each

side add log x, recollecting that

log x+ log(1 + n′) = log x(1 + n′) = log(x+ xn′),

and let
xn′ = h or n′ =

x

h
.

Making these substitutions, the equation becomes

log(x+ h) = log x+
M

x
h− M

2x2
h2 + etc.

If h is very small, log(x+ h) = log x+
M

x
h.

We can now apply this to the logarithmic example with
which we commenced this subject. It appears that

log 41713 = 4.6202714,

log(41713 + 1) = 4.6202714 + .0000104,

log(41713 + 2) = 4.6202714 + .0000104× 2.

From which, and the considerations above-mentioned,

log(41713 + h) = log 41713 + .0000104× h,

which is extremely near the truth, even when h is a much
larger number, as the tables will show. Suppose, then, that
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the logarithm of 41713.27 is required. Here h = .27. It
therefore only remains to calculate .0000104 × .27, and add
the result, or as much of it as is contained in the first seven
places of decimals, to the logarithm of 41713. This trouble
is saved in the tables in the following manner. The differ-
ence of the successive logarithms is written down, with the
exception of the cyphers at the beginning, in the column
marked D or Diff., under which are registered the tenths of
that difference, or as much of them as is contained in the
first seven decimal places, increasing the seventh figure by 1
when the eighth is equal to or greater than 5, and omitting
the cyphers to save room. From this table of tenths the table
of hundredth parts may be made by striking off the last fig-
ure, making the usual change in the last but one, when the
last is equal to or greater than 5, and placing an additional
cypher. The logarithm of 41713.27 is, therefore, obtained in
the following manner:

log 41713 = 4.6202714
.0000104× .2 = .0000021
.0000104× .07 = .0000007

log 41713.27 = 4.620274.

This, when the useless cyphers and parts of the operation are
omitted, is the process given in all the books of logarithms.
If the logarithm of a number containing more than seven sig-
nificant figures be sought, for example 219034.717, recourse
must be had to a table, in which the logarithms are carried to
more than seven places of decimals. The fact is, that in the
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first seven places of decimals there is no difference between
log 219034.7 and log 219034.717. For an excellent treatise on
the practice of logarithms the reader may consult the preface
to Babbage’s Table of Logarithms.∗

∗Copies of Babbage’s Table of Logarithms are now scarce, and the
reader may accordingly be referred to the prefaces of the treatises men-
tioned on page 169. The article on “Logarithms, Use of” in the English
Cyclopedia, may also be consulted with profit.—Ed.



CHAPTER XII.

ON THE STUDY OF ALGEBRA.

In this chapter we shall give the student some advice as to
the manner in which he should prosecute his studies in alge-
bra. The remaining parts of this subject present a field infi-
nite in its extent and in the variety of the applications which
present themselves. By whatever name the remaining parts
of the subject may be called, even though the ideas on which
they are based may be geometrical, still the mechanical pro-
cesses are algebraical, and present continual applications of
the preceding rules and developments of the subjects already
treated. This is the case in Trigonometry, the application of
Algebra to Geometry, the Differential Calculus, or Fluxions,
etc.

I. The first thing to be attended to in reading any al-
gebraical treatise, is the gaining a perfect understanding of
the different processes there exhibited, and of their connex-
ion with one another. This cannot be attained by a mere
reading of the book, however great the attention which may
be given. It is impossible, in a mathematical work, to fill up
every process in the manner in which it must be filled up in
the mind of the student before he can be said to have com-
pletely mastered it. Many results must be given, of which
the details are suppressed, such are the additions, multipli-
cations, extractions of the square root, etc., with which the
investigations abound. These must not be taken on trust
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by the student, but must be worked by his own pen, which
must never be out of his hand while engaged in any alge-
braical process. The method which we recommend is, to
write the whole of the symbolical part of each investigation,
filling up the parts to which we have alluded, adding only so
much verbal elucidation as is absolutely necessary to explain
the connexion of the different steps, which will generally be
much less than what is given in the book. This may appear
an alarming labor to one who has not tried it, nevertheless
we are convinced that it is by far the shortest method of
proceeding, since the deliberate consideration which the act
of writing forces us to give, will prevent the confusion and
difficulties which cannot fail to embarrass the beginner if he
attempt, by mere perusal only, to understand new reason-
ing expressed in new language. If, while proceeding in this
manner, any difficulty should occur, it should be written at
full length, and it will often happen that the misconception
which occasioned the embarrassment will not stand the trial
to which it is thus brought. Should there be still any matter
of doubt which is not removed by attentive reconsideration,
the student should proceed, first making a note of the point
which he is unable to perceive. To this he should recur in his
subsequent progress, whenever he arrives at anything which
appears to have any affinity, however remote, to the diffi-
culty which stopped him, and thus he will frequently find
himself in a condition to decypher what formerly appeared
incomprehensible. In reasoning purely geometrical, there is
less necessity for committing to writing the whole detail of
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the arguments, since the symbolical language is more quickly
understood, and the subject is in a great measure indepen-
dent of the mechanism of operations; but, in the processes
of algebra, there is no point on which so much depends, or
on which it becomes an instructor more strongly to insist.

II. On arriving at any new rule or process, the student
should work a number of examples sufficient to prove to him-
self that he understands and can apply the rule or process in
question. Here a difficulty will occur, since there are many of
these in the books, to which no examples are formally given.
Nevertheless, he may choose an example for himself, and
his previous knowledge will suggest some method of proving
whether his result is true or not. For example, the develop-
ment of (a+ x)

7
3 will exercise him in the use of the binomial

theorem; when he has obtained the series which is equivalent
to (a+ x)

7
3 , let him, in the same way, develop (a+ x)

2
3 ; the

product of these, since 7
3

+ 2
3

= 3, ought to be the same as
the development of (a + x)3, or as a3 + 3a2x + 3ax2 + x3.

He may also try whether the development of (a+x)
1
2 by the

binomial theorem, gives the same result as is obtained by
the extraction of the square root of a+ x. Again, when any
development is obtained, it should be seen whether the de-
velopment possesses all the properties of the expression from

which it has been derived. For example,
1

1− x
is proved to

be equivalent to the series

1 + x+ x2 + x3 + etc., ad infinitum.
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This, when multiplied by 1 − x, should give 1; when multi-
plied by 1− x2, should give 1 + x, because

1

1− x
× (1− x) = 1,

1

1− x
× (1− x2) = 1 + x, etc.

Again,

ax = 1 + x log a+
x2(log a)2

2
+
x3(log a)3

2 · 3
+ . . . ad inf.,

ay = 1 + y log a+
y2(log a)2

2
+ etc.,

ax+y = 1 + (x+ y) log a+
(x+ y)2(log a)2

2
+ etc.

Now, since ax × ay = ax+y, the product of the two first
series should give the third. Many other instances of the
same sort will suggest themselves, and a careful attention to
them will confirm the demonstration of the several theorems,
which, to a beginner, is often doubtful, on account of the
generality of the reasoning.

III. Whenever a demonstration appears perplexed, on ac-
count of the number and generality of the symbols, let some
particular case be chosen, and let the same demonstration
be applied. For example, if the binomial theorem should not
appear sufficiently plain, the same reasoning may be applied
to the expansion of (1+x)

2
3 , or any other case, which is there

applied to (1 + x)
m
n . Again, the general form of the product

(x + a), (x + b), (x + c), etc., . . . containing n factors, will
be made apparent by taking first two, then three, and four
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factors, before attempting to apply the reasoning which es-
tablishes the form of the general product. The same applies
particularly to the theory of permutations and combinations,
and to the doctrine of probabilities, which is so materially
connected with it. In the theory of equations it will be ad-
visable at first, instead of taking the general equation of the
form

xn + Axn−1 +Bxn−2 + · · ·+ Lx+M = 0,

to choose that of the third, or at most of the fourth degree,
or both, on which to demonstrate all the properties of ex-
pressions of this description. But in all these cases, when
the particular instances have been treated, the general case
should not be neglected, since the power of reasoning upon
expressions such as the one just given, in which all the terms
cannot be written down, on account of their indeterminate
number, must be exercised, before the student can proceed
with any prospect of success to the higher branches of math-
ematics.

IV. When any previous theorem is referred to, the refer-
ence should be made, and the student should satisfy himself
that he has not forgotten its demonstration. If he finds that
he has done so, he should not grudge the time necessary for
its recovery. By so doing, he will avoid the necessity of read-
ing over the subject again, and will obtain the additional
advantage of being able to give to each part of the subject
a time nearly proportional to its importance, whereas, by
reading a book over and over again until he is a master of it,
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he will not collect the more prominent parts, and will waste
time upon unimportant details, from which even the best
books are not free. The necessity for this continual reference
is particularly felt in the Elements of Geometry, where allu-
sion is constantly made to preceding propositions, and where
many theorems are of no importance, considered as results,
and are merely established in order to serve as the basis of
future propositions.

V. The student should not lose any opportunity of ex-
ercising himself in numerical calculation, and particularly
in the use of the logarithmic tables. His power of apply-
ing mathematics to questions of practical utility is in direct
proportion to the facility which he possesses in computa-
tion. Though it is in plane and spherical trigonometry that
the most direct numerical applications present themselves,
nevertheless the elementary parts of algebra abound with
useful practical questions. Such will be found resulting from
the binomial theorem, the theory of logarithms, and that of
continued fractions. The first requisite in this branch of the
subject, is a perfect acquaintance with the arithmetic of dec-
imal fractions; such a degree of acquaintance as can only be
gained by a knowledge of the principles as well as of the rules
which are deduced from them. From the imperfect manner
in which arithmetic is usually taught, the student ought in
most cases to recommence this study before proceeding to
the practice of logarithms.

VI. The greatest difficulty, in fact almost the only one of
any importance which algebra offers to the reason, is the use
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of the isolated negative sign in such expressions as −a, a−x,
and the symbols which we have called imaginary. It is a re-
markable fact, that the first elements of the mathematics,
sciences which demonstrate their results with more certainty
than any others, contain difficulties which have been the sub-
jects of discussion for centuries. In geometry, for example,
the theory of parallel lines has never yet been freed from the
difficulty which presented itself to Euclid, and obliged him to
assume, instead of proving, the 12th axiom of his first book.
Innumerable as have been the attempts to elude or surmount
this obstacle, no one has been more successful than another.
The elements of fluxions or the differential calculus, of me-
chanics, of optics, and of all the other sciences, in the same
manner contain difficulties peculiar to themselves. These are
not such as would suggest themselves to the beginner, who
is usually embarrassed by the actual performance of the op-
erations, and no ways perplexed by any doubts as to the
foundations of the rules by which he is to work. It is the
characteristic of a young student in the mathematical sci-
ences, that he sees, or fancies that he sees, the truth of every
result which can be stated in a few words, or arrived at by
few and simple operations, while that which is long is always
considered by him as abstruse. Thus while he feels no embar-
rassment as to the meaning of the equation +a×−a = −a2,
he considers the multiplication of am+an by bm+bn as one of
the difficulties of algebra. This arises, in our opinion, from
the manner in which his previous studies are usually con-
ducted. From his earliest infancy, he learns no fact from his
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own observation, he deduces no truth by the exercise of his
own reason. Even the tables of arithmetic, which, with a
little thought and calculation, he might construct for him-
self, are presented to him ready made, and it is considered
sufficient to commit them to memory. Thus a habit of exam-
ination is not formed, and the student comes to the science
of algebra fully prepared to believe in the truth of any rule
which is set before him, without other authority than the
fact of finding it in the book to which he is recommended.
It is no wonder, then, that he considers the difficulty of a
process as proportional to that of remembering and apply-
ing the rule which is given, without taking into consideration
the nature of the reasoning on which the rule was founded.
We are not advocates for stopping the progress of the stu-
dent by entering fully into all the arguments for and against
such questions, as the use of negative quantities, etc., which
he could not understand, and which are inconclusive on both
sides; but he might be made aware that a difficulty does ex-
ist, the nature of which might be pointed out to him, and
he might then, by the consideration of a sufficient number
of examples, treated separately, acquire confidence in the re-
sults to which the rules lead. Whatever may be thought of
this method, it must be better than an unsupported rule,
such as is given in many works on algebra.

It may perhaps be objected that this is induction, a
species of reasoning which is foreign to the usually received
notions of mathematics. To this it may be answered, that in-
ductive reasoning is of as frequent occurrence in the sciences
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as any other. It is certain that most great discoveries have
been made by means of it; and the mathematician knows
that one of his most powerful engines of demonstration is
that peculiar species of induction which proves many gen-
eral truths by demonstrating that, if the theorem be true in
one case, it is true for the succeeding one. But the beginner
is obliged to content himself with a less rigorous species of
proof, though equally conclusive, as far as moral certainty is
concerned. Unable to grasp the generalisations with which
the more advanced student is familiar, he must satisfy him-
self of the truth of general theorems by observing a number of
particular simple instances which he is able to comprehend.
For example, we would ask any one who has gone over this
ground, whether he derived more certainty as to the truth of
the binomial theorem from the general demonstration (if in-
deed he was suffered to see it so early in his career), or from
observation of its truth in the particular cases of the devel-
opment of (a+ b)2, (a+ b)3, etc., substantiated by ordinary
multiplication. We believe firmly, that to the mass of young
students, general demonstrations afford no conviction what-
ever; and that the same may be said of almost every species
of mathematical reasoning, when it is entirely new. We have
before observed, that it is necessary to learn to reason; and
in no case is the assertion more completely verified than in
the study of algebra. It was probably the experience of the
inutility of general demonstrations to the very young student
that caused the abandonment of reasoning which prevailed
so much in English works on elementary mathematics. Rules
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which the student could follow in practice supplied the place
of arguments which he could not, and no pains appear to
have been taken to adopt a middle course, by suiting the
nature of the proof to the student’s capacity. The objec-
tion to this appears to have been the necessity which arose
for departing from the appearance of rigorous demonstra-
tion. This was the cry of those who, not having seized the
spirit of the processes which they followed, placed the force
of the reasoning in the forms. To such the authority of great
names is a strong argument; we will therefore cite the words
of Laplace on this subject.

“Newton extended to fractional and negative powers the
analytical expression which he had found for whole and pos-
itive ones. You see in this extension one of the great ad-
vantages of algebraic language which expresses truths much
more general than those which were at first contemplated,
so that by making the extension of which it admits, there
arises a multitude of new truths out of formulæ which were
founded upon very limited suppositions. At first, people
were afraid to admit the general consequences with which
analytical formulæ furnished them; but a great number of
examples having verified them, we now, without fear, yield
ourselves to the guidance of analysis through all the conse-
quences to which it leads us, and the most happy discoveries
have sprung from the boldness. We must observe, however,
that precautions should be taken to avoid giving to formulæ
a greater extension than they really admit, and that it is
always well to demonstrate rigorously the results which are
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obtained.”
We have observed that beginners are not disposed to

quarrel with a rule which is easy in practice, and verified
by examples, on account of difficulties which occur in its
establishment. The early history of the sciences presents oc-
casion for the same remark. In the work of Diophantus, the
first Greek writer on algebra, we find a principle equivalent
to the equations +a × −b = −ab, and −a × −b = +ab, ad-
mitted as an axiom, without proof or difficulty. In the Hin-
doo works on algebra, and the Persian commentators upon
them, the same thing takes place. It appears, that struck
with the practical utility of the rule, and certain by induc-
tion of its truth, they did not scruple to avail themselves of
it. A more cultivated age, possessed of many formulæ whose
developments presented striking examples of an universality
in algebraic language not contemplated by its framers, set
itself to inquire more closely into the first principles of the
science. Long and still unfinished discussions have been the
result, but the progress of nations has exhibited throughout
a strong resemblance to that of individuals.

VII. The student should make for himself a syllabus of
results only, unaccompanied by any demonstration. It is es-
sential to acquire a correct memory for algebraical formulæ,
which will save much time and labor in the higher depart-
ments of the science. Such a syllabus will be a great assis-
tance in this respect, and care should be taken that it contain
only the most useful and most prominent formulæ. When-
ever that can be done, the student should have recourse to
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the system of tabulation, of which he will have seen several
examples in this treatise. In this way he should write the var-
ious forms which the roots of the equation ax2 + bx+ c = 0
assume, according to the signs of a, b, and c, etc. Both the
preceptor and the pupil, but especially the former, will de-
rive great advantage from the perusal of Lacroix, Essais sur
l’Enseignement en général et sur celui des Mathématiques en
particulier,∗ Condillac, La Langue des Calculs, and the var-

∗The books mentioned in the present passage, while still very valu-
able, are now not easily procurable and, besides, do not give a com-
plete idea of the subject in its modern extent. A recent work on the
Philosophy and Teaching of Mathematics is that of C. A. Laisant (La
Mathématique. Philosophie-Enseignement, Paris, 1898, Georges Carré
et C. Naud, publishers.) Perhaps the most accessible and useful work
in English for the elements is David Eugene Smith’s new book The
Teaching of Elementary Mathematics. (New York: The Macmillan
Company, 1900). Mention might be made also of W. M. Gillespie’s
translation from Comte’s Cours de Philosophie Positive, under the ti-
tle of The Philosophy of Mathematics (New York: Harpers, 1851), and
of the Cours de Méthodologie Mathématique of Félix Dauge (Deuxième
edition, revue et augmentee. Gand, Ad. Hoste; Paris, Gauthier-Villars,
1896). The recent work of Freycinet on the Philosophy of the Sciences
(Paris, 1896, Gauthier-Villars) will be found valuable. One of the best
and most comprehensive of the modern works is that of Duhamel, Des
Méthodes dans les Sciences de Raisonnement, (5 parts, Paris, Gauthier-
Villars), a work giving a comprehensive exposition of the foundations
of all the mathematical sciences. The chapters in Dühring’s Kritische
Geschichte der Prinzipien der Mechanik and his Neue Grundmittel on
the study of mathematics and mechanics is replete with original, but
hazardous, advice, and may be consulted as a counter-irritant to the
traditional professional views of the subject. The articles in the En-
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ious articles on the elements of algebra in the French Ency-
clopedia, which are for the most part written by D’Alembert.
The reader will here find the first principles of algebra, de-
veloped and elucidated in a masterly manner. A great col-
lection of examples will be found in most elementary works,
but particularly in Hirsch, Sammlung von Beispielen, etc.,
translated into English under the title of Self-Examinations
in Algebra, etc., London: Black, Young and Young, 1825.∗

The student who desires to carry his algebraical studies far-
ther than usual, and to make them the stepping-stone to a
knowledge of the higher mathematics, should be acquainted
with the French language.† A knowledge of this, sufficient
to enable him to read the simple and easy style in which the
writers of that nation treat the first principles of every sub-
ject, may be acquired in a short time. When that is done,
we recommend to the student the algebra of M. Bourdon,‡

glish Cyclopedia, by De Morgan himself, contain refreshing hints on this
subject. But the greatest inspiration is to be drawn from the works of
the masters themselves; for example, from such works as Laplace’s In-
troduction to the Calculus of Probabilities, or from the historical and
philosophical reflexions that uniformly accompany the later works of
Lagrange. The same remark applies to the later mathematicians of
note.—Ed.

∗Hirsch’s Collection, enlarged and modernised, can be obtained in
various recent German editions. The old English translations of the
original are not easily procured.—Ed.

†German is now of as much importance as French. But the French
text-books still retain their high standard.—Ed.

‡Bourdon’s Elements of Algebra is still used in France, having ap-
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a work of eminent merit, though of some difficulty to the
English student, and requiring some previous habits of alge-
braical reasoning.

VIII. The height to which algebraical studies should be
carried, must depend upon the purpose to which they are

peared in 1895 in its eighteenth edition, with notes by M. Prouhet
(Gauthier-Villars, Paris.) A more elementary French work of a modern
character is that of J. Collin (Second edition, 1888, Paris, Gauthier-
Villars). A larger and more complete treatise which begins with the
elements and extends to the higher branches of the subject is the Traité
d’Algèbre of H. Laurent, in four small volumes (Gauthier-Villars, Paris).
This work contains a large collection of examples. Another elementary
work is that of C. Bourlet, Lecons d’Algèbre Elémentaire, Paris, Colin,
1896. A standard and exhaustive work on higher algebra is the Cours
d’Algèbre Supérieure, of J. A. Serret, two large volumes (Fifth edition,
1885, Paris, Gauthier-Villars).

The number of American and English text-books of the intermedi-
ate and higher type is very large. Todhunter’s Algebra and Theory of
Equations (London: Macmillan & Co.) were for a long time the stan-
dards in England and this country, but have now (especially the first-
mentioned) been virtually superseded. An excellent recent text-book
for beginners, and one that skilfully introduces modern notions, is the
Elements of Algebra of W. W. Beman and D. E. Smith (Boston, 1900).
Fisher and Schwatt’s elementary text-books of algebra are also recom-
mendable from both a practical and theoretical point of view. Valuable
are C. Smith’s Treatise on Algebra (London: Macmillan), and Oliver,
Wait, and Jones’s Treatise on Algebra (Ithaca, N. Y., 1887), also Fine’s
Number System of Algebra (Boston: Leach). The best English work on
the theory of equations is Burnside and Panton’s (Longmans).

A very exhaustive presentation of the subject from the modern point
of view is the Algebra of Professor George Chrystal (Edinburgh: Adam
and Charles Black, publishers), in two large volumes of nearly six hun-
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to be applied. For the ordinary purposes of practical mathe-
matics, algebra is principally useful as the guide to trigonom-
etry, logarithms, and the solution of equations. Much and
profound study is not therefore requisite; the student should
pay great attention to all numerical processes and partic-

dred pages each. Recently Professor Chrystal has published a more
elementary work entitled Introduction to Algebra (same publishers).

A few German works may also be mentioned in this connexion, for
the benefit of readers acquainted with that language. Professor Her-
mann Schubert has, in various forms, given systematic expositions
of the elementary principles of arithmetic, (e. g., see his Arithmetik
und Algebra, Sammlung Göschen, Leipsic,—an extremely cheap series
containing several other elementary mathematical works of high stan-
dard; also, for a statement of Schubert’s views in English consult his
Mathematical Recreations, Chicago, 1898). Professor Schubert has re-
cently begun the editing of a new and larger series of mathematical
text-books called the Sammlung Schubert (Leipsic: Göschen), which
contains three works treating of algebra. In this connexion may be
mentioned also Matthiessen’s admirable Grundzüge der antiken und
modernen Algebra (Leipsic: Teubner) for literal equations. The fol-
lowing are all excellent: (1) Otto Biermann’s Elemente der höheren
Mathematik (Leipsic, 1895); (2) Petersen’s Theorie der algebraischen
Gleichungen (Copenhagen: Höst; also in French, Paris: Gauthier-
Villars); (3) Richard Baltzer’s Elemente der Mathematik (2 vols.,
Leipsic: Hirzel); (4) Gustav Holzmüller’s Methodisches Lehrbuch der
Elementarmathematik (3 parts, Leipsic: Teubner); (5) Werner Jos.
Schüller’s Arithmetik und Algebra für höhere Schulen und Lehrersem-
inare, besonders zum Selbstunterricht, etc. (Leipsic, 1891, Teubner);
(6) Oskar Schlömilch’s Handbuch der algebraischen Analysis (From-
mann, Stuttgart); (7) Eugen Netto’s Vorlesungen über Algebra (Leipsic:
Teubner, 2 vols.); (8) Heinrich Weber’s Lehrbuch der Algebra (Braun-
schweig: Vieweg, 2 vols). This last work is the most advanced treatise
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ularly to the methods of approximation which he will find
in all the books. His principal instrument is the table of
logarithms of which he should secure a knowledge both the-
oretical and practical. The course which should be adopted
preparatory to proceeding to the higher branches of math-
ematics is different. It is still of great importance that the
student should be well acquainted with numerical applica-
tions; nevertheless, he may omit with advantage many de-
tails relative to the obtaining of approximative numerical
results, particularly in the theory of equations of higher de-
grees than the second. Instead of occupying himself upon
these, he should proceed to the application of algebra to ge-
ometry, and afterwards to the differential calculus. When
a competent knowledge of these has been obtained, he may
then revert to the subjects which he has neglected, giving
them more or less attention according to his own opinion of
the use which he is likely to have for them. This applies
particularly to the theory of equations, which abounds with
processes of which very few students will afterwards find the
necessity.

We shall proceed in the next number to the difficulties
which arise in the study of Geometry and Trigonometry.

that has yet appeared. A French translation has been announced.—
Ed.—April, 1902.



CHAPTER XIII.

ON THE DEFINITIONS OF GEOMETRY.

In this treatise on the difficulties of Geometry and Trigonom-
etry, we propose, as in the former part of the work, to touch
on those points only which, from novelty in their principle,
are found to present difficulties to the student, and which are
frequently not sufficiently dwelt upon in elementary works.
Perhaps it may be asserted, that there are no difficulties in
geometry which are likely to place a serious obstacle in the
way of an intelligent beginner, except the temporary em-
barrassment which always attends the commencement of a
new study; that, for example, there is nothing in the ele-
ments of pure geometry comparable, in point of complexity,
to the theory of the negative sign, of fractional indices, or
of the decomposition of an expression of the second degree
into factors. This may be true; and were it only necessary
to study the elements of this science for themselves, without
reference to their application, by means of algebra, to higher
branches of knowledge, we should not have thought it neces-
sary to call the attention of our readers to the points which
we shall proceed to place before them. But while there is
a higher study in which elementary ideas, simple enough in
their first form, are so generalised as to become difficult, it
will be an assistance to the beginner who intends to proceed
through a wider course of pure mathematics than forms part
of common education, if his attention is early directed, in a
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manner which he can comprehend, to future extensions of
what is before him.

The reason why geometry is not so difficult as algebra,
is to be found in the less general nature of the symbols em-
ployed. In algebra a general proposition respecting numbers
is to be proved. Letters are taken which may represent any
of the numbers in question, and the course of the demon-
stration, far from making any use of a particular case, does
not even allow that any reasoning, however general in its
nature, is conclusive, unless the symbols are as general as
the arguments. We do not say that it would be contrary
to good logic to form general conclusions from reasoning on
one particular case, when it is evident that the same consid-
erations might be applied to any other, but only that very
great caution, more than a beginner can see the value of,
would be requisite in deducing the conclusion. There occurs
also a mixture of general and particular propositions, and
the latter are liable to be mistaken for the former. In geom-
etry on the contrary, at least in the elementary parts, any
proposition may be safely demonstrated by reasonings on
any one particular example. For though in proving a prop-
erty of a triangle many truths regarding that triangle may
be asserted as having been proved before, none are brought
forward which are not general, that is, true for all instances
of the same kind. It also affords some facility that the re-
sults of elementary geometry are in many cases sufficiently
evident of themselves to the eye; for instance, that two sides
of a triangle are greater than the third, whereas in algebra
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many rudimentary propositions derive no evidence from the
senses; for example, that a3 − b3 is always divisible without
remainder by a− b.

The definitions of the simple terms point, line, and sur-
face have given rise to much discussion. But the difficulties
which attend them are not of a nature to embarrass the be-
ginner, provided he will rest content with the notions which
he has already derived from observation. No explanation can
make these terms more intelligible. To them may be added
the words straight line, which cannot be mistaken for one
moment, unless it be by means of the attempt to explain
them by saying that a straight line is “that which lies evenly
between its extreme points.”

The line and surface are distinct species of magnitude,
as much so as the yard and the acre. The first is no part of
the second, that is, no number of lines can make a surface.
When therefore a surface is divided into two parts by a line,
the dividing line is not to be considered as forming a part
of either. That the idea of the line or boundary necessarily
enters into the notion of the division is very true; but if we
conceive the line abstracted, and thus get rid of the idea of
division, neither surface is increased or diminished, which
is what we mean when we say that the line is not a part
of the surface. The same considerations apply to a point,
considered as the boundary of the divisions of a line.

The beginner may perhaps imagine that a line is made
up of points, that is, that every line is the sum of a number
of points, a surface the sum of a number of lines, and so
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on. This arises from the fact, that the things which we draw
on paper as the representatives of lines and points, have in
reality three dimensions, two of which, length and breadth,
are perfectly visible. Thus the point, such as we are obliged
to represent it, in order to make its position visible, is in
reality a part of our line, and our points, if sufficiently mul-
tiplied in number and placed side by side, would compose a
line of any length whatever. But taking the mathematical
definition of a point, which denies it all magnitude, either in
length, breadth, or thickness, and of a line, which is asserted
to possess length only without breadth or thickness, it is easy
to show that a point is no part of a line, by making it appear
that the shortest line can be cut in as many points as the
longest, which may be done in the following manner. Let
AB be any straight line, from the ends of which, A and B,
draw two lines, AF and CB, parallel to one another. Con-
sider AF as produced without limit, and in CB take any
point C, from which draw lines CE, CF , etc., to different
points in AF . It is evident that for each point E in AF
there is a distinct point in AB, viz., the intersection of CE
with AB;—for, were it possible that two points, E and F
in AF , could be thus connected with the same point of AB,
it is evident that two straight lines would enclose a space,
viz., the lines CE and CF , which both pass through C, and
would, were our supposition correct, also pass through the
same point in AB. There can then be taken as many points
in the finite or unbounded line AB as in the indefinitely ex-
tended line AF .
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Fig. 1.

The next definition which we shall consider is that of a
plane surface. The word plane or flat is as hard to define,
without reference to any thing but the idea we have of it, as
it is easy to understand. Nevertheless the practical method
of ascertaining whether or no a surface is plane, will fur-
nish a definition, not such, indeed, as to render the nature
of a plane surface more evident, but which will serve, in a
mathematical point of view, as a basis on which to rest the
propositions of solid geometry. If the edge of a ruler, known
to be perfectly straight, coincides with a surface throughout
its whole length, in whatever direction it may be placed upon
that surface, we conclude that the surface is plane. Hence
the definition of a plane surface is that in which, any two
points being taken, the straight line joining these points lies
wholly upon the surface.

Two straight lines have a relation to one another indepen-
dent altogether of their length. This we commonly express
(for among the most common ideas are found the germ of ev-
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ery geometrical theory) by saying that they are in the same
or different directions. By the direction of the needle we as-
certain the direction in which to proceed at sea, and by the
direction in which the hands of a clock are placed we tell the
hour. It remains to reduce this common notion to a more
precise form.

Suppose a straight line OA to be given in magnitude and
position, and to remain fixed while another line OB, at first
coincident with OA, is made to move round OA, so as contin-
ually to vary its direction with respect to OA. The process
of opening a pair of compasses will furnish an illustration of
this, but the two lines need not be equal to one another. In
this case the opening made by the two will continually in-
crease, and this opening is a species of magnitude, since one
opening may be compared with another, so as to ascertain
which of the two is the greater. Thus if the figure CPD be
removed from its place, without any other change, so that
the point P may fall on O, and the line PC may lie upon
and become a part of OA, or OA of PC, according to which
is the longer of the two, then if the opening CPD is the
same as the opening AOB, PD will lie upon OB at the
same time as PC lies upon OA. But if PD does not then lie
upon OB, but falls between OB and OA, the opening CPD
is less than the opening AOB, and if PD does not fall be-
tween OA and OB, or on OB, the opening CPD is greater
than the opening BOA. To this species of magnitude, the
opening of two lines, the name of angle is given, that is BO is
said to make an angle with OA. The difficulty here arises
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Fig. 2.

from this magnitude being one, the measure of which has sel-
dom fallen under observation of those who begin geometry.
Every one has measured one line by means of another, and
has thus made a number the representative of a length; but
few, at this period of their studies, have been accustomed
to the consideration, that one opening may be contained a
certain number of times in another, or may be a certain frac-
tion of another. Nevertheless we may find measures of this
new species of magnitude either by means of time, length,
or number.

One magnitude is said to be a measure of another, when,
if the first be doubled, trebled, halved, etc., the second is
doubled, trebled, or halved, etc.; that is, when any fraction
or multiple of the first corresponds to the same fraction or
multiple of the second in the same manner as the first does
to the second. The two quantities need not be of the same
kind: thus, in the barometer the height of the mercury (a
length) measures the pressure of the atmosphere (a weight);
for if the barometer which yesterday stood at 28 inches, to-
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day stands at 29 inches, in which case the height of yesterday
is increased by its 28th part, we know that the atmospheric
pressure of yesterday is increased by its 28th part to-day.
Again, in a watch, the number of hours elapsed since twelve
o clock is measured by the angle which a hand makes with the
position it occupied at twelve o’clock. In the spring balances
a weight is measured by an angle, and many other similar
instances might be given.

This being premised, suppose a line which moves round
another as just described, to move uniformly, that is, to de-
scribe equal openings or angles in equal times. Suppose the
line OA to move completely round, so as to reassume its
first position in twenty-four hours. Then in twelve hours
the moving line will be in the position OB, in six hours it
will be in OC, and in eighteen hours in OD. The line OC
is that which makes equal angles with OA and OB, and is
said to be at right angles, or perpendicular to OA and OB.
Again, OA and OB which are in the same right line, but
on opposite sides of the point O, evidently make an open-
ing or angle which is equal to the sum of the angles AOC
and COB, or equal to two right angles. A line may also be
said to make with itself an opening equal to four right angles,
since after revolving through four right angles, the moving
line reassumes its original position. We may even carry this
notion farther: for if the moving line be in the position OE
when P hours have elapsed, it will recover that position af-
ter every twenty-four hours, that is, for every additional four
right angles described; so that the angle AOE is equally well
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Fig. 3.

represented by any of the following angles:

4 right angles + AOE,

8 right angles + AOE,

12 right angles + AOE, etc.

These formulæ which suppose an opening greater than
any apparent opening, and which take in and represent the
fact that the moving line has attained its position for the
second, third, fourth, etc., time, since the commencement of
the motion, are not of any use in elementary geometry; but
as they play an important part in the application of algebra
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to the theory of angles, we have thought it right to mention
them here.

It is plain also that we may conceive the line OE to
make two openings or angles with the original position OA:
(1) that through which it has moved to recede from OA;
(2) that through which it must move to reach OA again.
The first (in the position in which we have placed OA) is
what is called in geometry the angle AOE; the second is
more simply described as composed of the openings or an-
gles EOC, COB, BOD, DOA, and is not used except in the
application of algebra above mentioned.∗ Of the two angles
just alluded to, one must be less than two right angles, and
the second greater; the first is the one usually referred to.

It is plain that the angle or opening made by two lines
does not depend upon their length but upon their position;
if either be shortened or lengthened, the angle still remains
the same; and if while the angle increases or decreases one
of the straight lines containing it is diminished, the angle
so contained may have a definite and given magnitude at
the moment when the straight line disappears altogether
and becomes nothing. For example, take two points of any
curve AB, and join A and B by a straight line. Let the
point B move towards A; it is evident that the angle made
by the moving line with AB increases continually, while as
much of one of the lines containing it as is intercepted by the

∗But use is made of it in some modern text-books of elementary
geometry.—Ed.



on the definitions of geometry. 203

Fig. 4.

curve, diminishes without limit. When this intercepted part
disappears entirely, the line in which it would have lain had
it had any length, has reached the line AG, which is called
the tangent of the curve.

In elementary geometry two equal angles lying on differ-
ent sides of a line, such as AOE, AOH (Fig. 3), would be
considered as the same. In the application of algebra, they
would be considered as having different signs, for reasons
stated at length in pages 111 et seq., of the first part of this
Treatise. It is also common in the latter branch of the sci-
ence to measure angles in one direction only; for example,
in Figure 3 the angles made by OE, OF , OG, and OH, if
measured upwards from OA, would be the openings through
which a line must move in the same direction from OA, to
attain those positions; and the second, third, and fourth an-
gles would be greater than one, two, and three right angles
respectively.

We proceed to the method of reasoning in geometry, or
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rather to the method of reasoning in general, since there is,
or ought to be, no essential difference between the manner
of deducing results from first principles, in any science.



CHAPTER XIV.

ON GEOMETRICAL REASONING.

It is evident that all reasoning, of what form soever, can
be reduced at last to a number of simple propositions or
assertions; each of which, if it be not self-evident, depends
upon those which have preceded it. Every assertion can be
divided into three distinct parts. Thus the phrase, “all right
angles are equal,” consists of: (1) the subject spoken of, viz.,
right angles, which is here spoken of universally, since every
right angle is a part of the subject; (2) the copula, or manner
in which the two are joined together, which is generally the
verb is, or is equal to, and can always be reduced to one
or the other: in this case the copula is affirmative; (3) the
predicate, or thing asserted of the subject, viz., equal angles.
The phrase, thus divided, stands as written below under 1,
and is called a universal affirmative. The second is called
a particular affirmative proposition; the third a universal
negative; the fourth a particular negative:

1. All right angles are equal (magnitudes).
2. Some triangles are equilateral (figures).
3. No circle is convex to its diameter.
4. Some triangles are not equilateral (figures).
Many assertions appear in a form which, at first sight,

cannot be reduced to one of the preceding; the following are
instances of the change which it is necessary to make in them:

1. Parallel lines never meet, or parallel lines are lines
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which never meet.
2. The angles at the base of an isosceles triangle are

equal, or an isosceles triangle is a triangle having the angles
at the base equal.

The different species of assertions, and the arguments
which are compounded of them, may be distinctly conceived
by referring them all to one species of subject and predicate.
Since every assertion, generally speaking, includes a number
of individual cases in its subject, let the points of a circle be
the subject and those of a triangle the predicate. These fig-
ures being drawn, the four species of assertions just alluded
to are as follows:

1. Every point of the circle is a point of the triangle, or
the circle is contained in the triangle.

2. Some points of the circle are points of the triangle, or
part of the circle is contained in the triangle.

3. No point of the circle is a point of the triangle, or the
circle is entirely without the triangle.

4. Some points of the circle are not points of the triangle,
or part of the circle is outside the triangle.

On these we observe that the second follows from the
first, as also the fourth from the third, since that which is
true of all is true of some or any; while the first and third do
not follow from the second and fourth, necessarily, since that
which is true of some only need not be true of all. Again,
the second and fourth are not necessarily inconsistent with
each other for the same reason. Also two of these asser-
tions must be true and the others untrue. The first and the
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third are called contraries, while the first and fourth, and
the second and third are contradictory. The converse of a
proposition is made by changing the predicate into the sub-
ject, and the subject into the predicate. No mistake is more
common than confounding together a proposition and its
converse, the tendency to which is rather increased in those
who begin geometry, by the number of propositions which
they find, the converses of which are true. Thus all the def-
initions are necessarily conversely true, since the identity of
the subject and predicate is not merely asserted, but the
subject is declared to be a name given to all those magni-
tudes which have the properties laid down in the predicate,
and to no others. Thus a square is a four-sided figure having
equal sides and one right angle, that is, let every four-sided
figure having, etc., be called a square, and let no other figure
be called by that name, whence the truth of the converse is
evident. Also many of the facts proved in geometry are con-
versely true. Thus all equilateral triangles are equiangular,
from which it is proved that all equiangular triangles are
equilateral. Of the first species of assertion, the universal
affirmative, the converse is not necessarily true. Thus “ev-
ery point in figure A is a point of B,” does not imply that
“every point of B is a point of A,” although this may be the
case, and is, if the two figures coincide entirely. The second
species, the particular affirmative, is conversely true, since
if some points of A are points of B, some points of B are
also points of A. The first species of assertion is conversely
true, if the converse be made to take the form of the sec-



on the study of mathematics. 208

ond species: thus from “all right angles are equal,” it may
be inferred that “some equal magnitudes are right angles.”
The third species, the universal negative, is conversely true,
since if “no point of B is a point of A,” it may be inferred
that “no point of A is a point of B.” The fourth species, the
particular negative, is not necessarily conversely true. From
“some points of A are not points of B,” or A is not entirely
contained within B, we can infer nothing as to whether B is
or is not entirely contained in A. It is plain that the con-
verse of a proposition is not necessarily true, if it says more
either of the subject or predicate than was said before. Now
“every equilateral triangle is equiangular,” does not speak of
all equiangular triangles, but asserts that among all possible
equiangular triangles are to be found all the equilateral ones.
There may then, for anything to the contrary to be discov-
ered in our assertion, be classes of equiangular triangles not
included under this assertion, of which we can therefore say
nothing. But in saying “no right angles are unequal,” that
which we exclude, we exclude from all unequal angles, and
therefore “no unequal angles are right angles” is not more
general than the first.

The various assertions brought forward in a geometrical
demonstration must be derived in one of the following ways:

I. From definition. This is merely substituting, instead
of a description, the name which it has been agreed to give
to whatever bears that description. No definition ought to
be introduced until it is certain that the thing defined is
really possible. Thus though parallel lines are defined to be
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“lines which are in the same plane, and which being ever
so far produced never meet,” the mere agreement to call
such lines, should they exist, by the name of parallels, is no
sufficient ground to assume that they do exist. The definition
is therefore inadmissible until it is really shown that there
are such things as lines which being in the same plane never
meet. Again, before applying the name, care must be taken
that all the circumstances connected with the definition have
been attended to. Thus, though in plane geometry, where
all lines are in one plane, it is sufficient that two lines would
never meet though ever so far produced, to call them parallel,
yet in solid geometry the first circumstance must be attended
to, and it must be shown that lines are in the same plane
before the name can be applied. Some of the axioms come
so near to definitions in their nature, that their place may
be considered as doubtful. Such are, “the whole is greater
than its part,” and “magnitudes which entirely coincide are
equal to one another.”

II. From hypothesis. In the statement of every proposi-
tion, certain connexions are supposed to exist from which it
is asserted that certain consequences will follow. Thus “in
an isosceles triangle the angles at the base are equal,” or, “if
a triangle be isosceles the angles at the base will be equal.”
Here the hypothesis or supposition is that the triangle has
two equal sides, the consequence asserted is that the angles
at the base or third side will be equal. The consequence
being only asserted to be true when the angle is isosceles,
such a triangle is supposed to be taken as the basis of the
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reasonings, and the condition that its two sides are equal,
when introduced in the proof, is said to be introduced by
hypothesis.

In order to establish the result it may be necessary to
draw other lines, etc., which are not mentioned in the first
hypothesis. These, when introduced, form what is called the
construction.

There is another species of hypothesis much in use, princi-
pally when it is required to deduce the converse of a theorem
from the theorem itself. Instead of proving the consequence
directly, the contradictory of the consequence is assumed to
hold good, and if from this new hypothesis, supposed to exist
together with the old one, any evidently absurd result can
be derived, such as that the whole is greater than its part,
this shows that the two hypotheses are not consistent, and
that if the first be true, the second cannot be so. But if the
second be not true, its contradictory is true, which is what
was required to be proved.

III. From the evidence of the assertions themselves. The
propositions thus introduced without proof are only such as
are in their nature too simple to admit of it. They are called
axioms. But it is necessary to observe, that the claim of
an assertion to be called an axiom does not depend only on
its being self-evident. Were this the case many propositions
which are always proved might be assumed; for example, that
two sides of a triangle are greater than the third, or that a
straight line is the shortest distance between two points. In
addition to being self-evident, it must be incapable of proof
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by any other means, and it is one of the objects of geometry
to reduce the demonstrations to the least possible number
of axioms. There are only two axioms which are distinctly
geometrical in their nature, viz., “two straight lines cannot
enclose a space,” and “through each point outside a line, not
more than one parallel to that line can be drawn.” All the
rest of the propositions commonly given as axioms are either
arithmetical in their nature; such as “the whole is greater
than its part,” “the doubles of equals are equals,” etc.; or
mere definitions, such as “magnitudes which entirely coincide
are equal;” or theorems admitting of proof, such as “all right
angles are equal.” There is however one more species of self-
evident proposition, the postulate or self-evident problem,
such as the possibility of drawing a right line, etc.

IV. From proof already given. What has been proved
once may be always taken for granted afterwards. It is evi-
dent that this is merely for the sake of brevity, since it would
be possible to begin from the axioms and proceed direct to
the proof of any one proposition, however far removed from
them; and this is an exercise which we recommend to the stu-
dent. Thus much for the legitimate use of any single asser-
tion or proposition. We proceed to the manner of deducing
a third proposition from two others.

It is evident that no assertion can be the direct and nec-
essary consequence of two others, unless those two contain
something in common, or which is spoken of in both. In
many, nay most, cases of ordinary conversation and writing,
we leave out one of the assertions, which is, usually speak-



on the study of mathematics. 212

ing, very evident, and make the other assertion followed by
the consequence of both. Thus, “Geometry is useful, and
therefore ought to be studied,” contains not only what is ex-
pressed, but also the following, “That which is useful ought
to be studied;” for were this not admitted, the former as-
sertion would not be necessarily true. This may be written
thus:

Every thing useful is what ought to be studied.

Geometry is useful, therefore geometry is what
ought to be studied.

This, in its present state, is called a syllogism, and may
be compared with the following, from which it only differs in
the things spoken of, and not in the manner in which they
are spoken of.

Every point of the circle is a point of the triangle.

The point B is a point of the circle.

Therefore the point B is a point of the triangle.

Here a connexion is established between the point B and
the points of the triangle (viz., that the first is one of the
second) by comparing them with the points of the circle;
that which is asserted of every point of the circle in the first
can be asserted of the point B, because from the second B is
one of these points. Again, in the former argument, whatever
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is asserted of every thing useful is true of geometry, because
geometry is useful.

The common term of the two propositions is called the
middle term, while the predicate and subject of the conclu-
sion are called the major and minor terms, respectively. The
two first assertions are called the major and minor premisses,
and the last the conclusion. Suppose now the two premisses
and conclusion of the syllogism just quoted to be varied in
every possible way from affirmative to negative, from uni-
versal to particular, and vice versa, where the number of
changes will be 4 × 4 × 4, or 64 (called moods); since each
proposition may receive four different forms, and each form
of one may be compounded with any of the other two. And
these may be still further varied, if instead of the middle
term being the subject of the first, and the predicate of the
second, this order be reversed, or if the middle term be the
subject of both, or the predicate of both, which will give four
different figures, as they are called, to each of the sixty-four
moods above mentioned. But of these very few are correct
deductions, and without entering into every case we will state
some general rules, being the methods which common reason
would take to ascertain the truth or falsehood of any one of
them, collected and generalised.∗

∗Whately’s Logic, page 76, third edition. A work which should be
read by all mathematical students. [Whately’s Logic is procurable in
modern editions, many of which were, until recently, widely read in our
academies and colleges. The following works in which the same mate-
rial is presented in a shape more comforming to modern methods may
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I. The middle term must be the same in both premisses,
by what has just been observed; since in the comparison of
two things with one and the same third thing, in order to
ascertain their connexion or discrepancy, consists the whole
of reasoning. Thus, the deduction without further process of
the equation a2 + b2 = c2 from the proposition, which proves
that the sum of the squares described on the sides of a right-
angled triangle is equal to the square on its hypothenuse,
a, b, and c being the number of linear units in the sides and
the hypothenuse, is incorrect, since syllogistically stated the
argument would stand thus:

The sum of the squares of the
lines a and b

and

the square of the line c

 are equal quantities,

be mentioned: T. Fowler’s Elements of Deductive Logic; Bain’s Logic;
Venn’s Empirical Logic and Symbolical Logic; Keynes’s Formal Logic;
Carveth Read’s Logic, Deductive and Inductive; Mill’s System of Logic
(a discussion rather than a presentation). Strictly contemporary logic
will be found represented in the following works in English: Jevons’s
Principles of Science and Studies in Deductive Logic; Bradley’s Prin-
ciples of Logic; Sidgwick’s Process of Argument ; Bosanquet’s Logic:
or, the Morphology of Knowledge; and the same author’s Essentials
of Logic; Sigwart’s Logic, recently translated from the German; and
Ueberweg’s System of Logic and History of Logical Doctrines.—Ed.]
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a2 + b2

and

c2

 are


the sum of the squares of a and b,

and

the square of c.

Therefore

a2 + b2

and

c2

 are equal quantities.

Here the term square in the major premiss has its geo-
metrical, and in the minor its algebraical sense, being in the
first a geometrical figure, and in the second an arithmetical
operation. The term of comparison is not therefore the same
in both, and the conclusion does not therefore follow from
the premisses.

The same error is committed if all that can be contained
under the middle term be not spoken of either in the ma-
jor or minor premiss. For if each premiss mentions only a
part of the middle term, these parts may be different, and
the term of comparison really different in the two, though
passing under the same name in both. Thus,

All the triangle is in the circle,
All the square is in the circle,

proves nothing, since the square may, consistently with these
conditions, be either wholly, partly, or not at all contained in
the triangle. In fact, as we have before shown, each of these
assertions speaks of a part of the circle only. The following
is of the same kind:
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Some of the triangle is in the circle.
Some of the circle is not in the square, etc.

II. If both premisses are negative, no conclusion can be
drawn. For it can evidently be no proof either of agreement
or disagreement that two things both disagree with a third.
Thus the following is inconclusive:

None of the circle is in the triangle.
None of the square is in the circle.

III. If both premisses are particular, no conclusion can be
drawn, as will appear from every instance that can be taken,
thus:

Some of the circle is in the triangle.
Some of the square is not in the circle,

proves nothing.
IV. In forming a conclusion, where a conclusion can be

formed, nothing must be asserted more generally in the con-
clusion than in the premisses. Thus, if from the following,

All the triangle is in the circle,
All the circle is in the square,

we would draw a conclusion in which the square should be
the subject, since the whole square is not mentioned in the
minor premiss, but only part of it, the conclusion must be,

Part of the square is in the triangle.
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V. If either of the premisses be negative, the conclusion
must be negative. For as both premisses cannot be nega-
tive, there is asserted in one premiss an agreement between
the term of the conclusion and the middle term, and in the
other premiss a disagreement between the other term of the
conclusion, and the same middle term. From these nothing
can be inferred but a disagreement or negative conclusion.
Thus, from

None of the circle is in the triangle,
All the circle is in the square,

can only be inferred,

Some of the square is not in the triangle.

VI. If either premiss be particular, the conclusion must
be particular. For example, from

None of the circle is in the triangle,
Some of the circle is in the square,

we deduce,

Some of the square is not in the triangle.

If the student now applies these rules, he will find that of
the sixty-four moods eleven only are admissible in any case;
and in applying these eleven moods to the different figures he
will also find that some of them are not admissible in every
figure, and some not necessary, on account of the conclusion,
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though true, not being as general as from the premisses it
might be. This he may do either by reasoning or by actual in-
spection of the figures, drawn and arranged according to the
premisses. The admissible moods are nineteen in number,
and are as follows, where A at the beginning of a proposi-
tion signifies that it is a universal affirmative, E a universal
negative, I a particular affirmative, O a particular negative.

Figure I. The middle term is the subject of the major,
and the predicate of the minor premiss.

1.∗ A All the © is in the 4,
A All the � is in the ©,

∴ A All the � is in the 4.
2. E None of the © is in the 4,

A All the � is in the ©,
∴ E None of the � is in the 4.
3. A All the © is in the 4,

I Some of the � is in the ©,
∴ I Some of the � is in the 4.
4. E None of the © is in the 4,

I Some of the � is in the ©,
∴ O Some of the � is not in 4.

Figure II. The middle term is the predicate of both pre-

∗This, and 3, are the most simple of all the combinations, and the
most frequently used, especially in geometry.
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misses.

1. E None of the 4 is in the ©,
A All the � is in the ©,

∴ E None of the � is in the 4.
2. A All the 4 is in the ©,

E None of the � is in the ©,
∴ E None of the � is in the 4.
3. E None of the 4 is in the ©,

I Some of the � is in the ©,
∴ O Some of the � is not in 4.
4. A All the 4 is in the ©,

O Some of the � is not in©,
∴ O Some of the � is not in 4.

Figure III. The middle term is the subject of both pre-
misses.

1. A All the © is in the 4,
A All the © is in the �,

∴ I Some of the � is in the 4.
2. I Some of the © is in the 4,

A All the © is in the �,
∴ I Some of the � is in the 4.
3. A All the © is in the 4,

I Some of the © is in the �,
∴ I Some of the � is in the 4.
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4. E None of the © is in the 4,
A All the © is in the �,

∴ O Some of the � is not in 4.
5. O Some of the © is not in 4,

A All the © is in the �,
∴ O Some of the � is not in 4.
6. E None of the © is in the 4,

I Some of the © is in the �,
∴ O Some of the � is not in 4.

Figure IV. The middle term is the predicate of the major,
and the subject of the minor premiss.

1. A All the 4 is in the ©,
A All the © is in the �,

∴ I Some of the � is in the 4.
2. A All the 4 is in the ©,

E None of the © is in the �,
∴ E None of the � is in the 4.
3. I Some of the 4 is in the ©,

A All the © is in the �,
∴ I Some of the � is in the 4.
4. E None of the 4 is in the ©,

A All the © is in the �,
∴ O Some of the � is not in 4.
5. E None of the 4 is in the ©,

I Some of the © is in the �,
∴ O Some of the � is not in 4.
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We may observe that it is sometimes possible to condense
two or more syllogisms into one argument, thus:

Every A is B (1),

Every B is C (2),

Every C is D (3),

Every D is E (4),

Therefore Every A is E (5),

is equivalent to three distinct syllogisms of the form Fig. 1.;
these syllogisms at length being (1), (2), a; a, (3), b;
b, (4), (5).

The student, when he has well considered each of these,
and satisfied himself, first by the rules, and afterwards by
inspection, that each of them is legitimate; and also that
all other moods, not contained in the above, are not allow-
able, or at least do not give the most general conclusion,
should form for himself examples of each case, for instance
of Fig. III, 3:

The axioms constitute part of the basis of geom-
etry.

Some of the axioms are grounded on the evidence
of the senses.

∴ Some evidence derived from the senses is part
of the basis of geometry.



on the study of mathematics. 222

He should also exercise himself in the first principles of
reasoning by reducing arguments as found in books to the
syllogistic form. Any controversial or argumentative work
will furnish him with a sufficient number of instances.

Inductive reasoning is that in which a universal proposi-
tion is proved by proving separately every one of its particu-
lar cases. As where, for example, a figure, ABCD, is proved
to be a rectangle by proving each of its angles separately to
be a right angle, or proving all the premisses of the following,
from which the conclusion follows necessarily:

The angles at A, B, C, and D are all the angles
of the figure ABCD.

A is a right angle,

B is a right angle,

C is a right angle,

D is a right angle,

Therefore all the angles of the figure ABCD are
right angles.

This may be considered as one syllogism of which the
minor premiss is,

A, B, C, and D are right angles,

where each part is to be separately proved.
Reasoning à fortiori, is that contained in Fig. I. 1. in

a different form, thus: A is greater than B, B is greater
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than C; à fortiori A is greater than C; which may be also
stated as follows:

The whole of B is contained in A,

The whole of C is contained in B,

Therefore C is contained in A.

The premisses of the second do not necessarily imply as
much as those of the first; the complete reduction we leave
to the student.

The elements of geometry present a collection of such
reasonings as we have just described, though in a more con-
densed form. It is true that, for the convenience of the
learner, it is broken up into distinct propositions, as a jour-
ney is divided into stages; but nevertheless, from the very
commencement, there is nothing which is not of the nature
just described. We present the following as a specimen of a
geometrical proposition reduced nearly to a syllogistic form.
To avoid multiplying petty syllogisms, we have omitted some
few which the student can easily supply.

Hypothesis.—ABC is a right-angled triangle the right an-
gle being at A.

Consequence.—The squares on AB and AC are together
equal to the square on BC.

Construction: Upon BC and BA describe squares, pro-
duce DB to meet EF , produced, if necessary, in G, and
through A draw HAK parallel to BD.
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Demonstration.

I. Conterminous sides of a square are at right angles to one
another. (Definition.)

Fig. 5.

EB and BA are conterminous
sides of a square. (Construction.)
∴ EB and BA are at right an-

gles.
II. A similar syllogism to

prove that DB and BC are at
right angles, and another to prove
that GB and BC are at right an-
gles.

III. Two right lines drawn per-
pendicular to two other right lines
make the same angle as those oth-
ers (already proved); EB and BG
and AB and BC are two right
lines, etc., (I. II.).
∴ The angle EBG is equal

to ABC.
IV. All sides of a square are equal. (Definition.)
AB and BE are sides of a square. (Construction.)
∴ AB and BE are equal.
V. All right angles are equal. (Already proved.)
BEG and BAC are right angles. (Hypothesis and con-

struction.)
∴ BEG and BAC are equal angles.
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VI. Two triangles having two angles of one equal to two
angles of the other, and the interjacent sides equal, are equal
in all respects. (Proved.)

BEG and BAC are two triangles having BEG and EBG
respectively equal to BAC and ABC and the sides EB and
BA equal. (III. IV. V.)
∴ The triangles BEG, BAC are equal in all respects.
VII. BG is equal to BC. (VI.)
BC is equal to BD. (Proved as IV.)
∴ BG is equal to BD.
VIII. A four-sided figure whose opposite sides are parallel

is a parallelogram. (Definition.) BGHA and BPKD are
four-sided figures, etc. (Construction.)
∴ BGHA and BPKD are parallelograms.
IX. Parallelograms upon the same base and between the

same parallels are equal. (Proved.) EBAF and BGHA, are
parallelograms, etc. (Construction.)
∴ EBAF and BGHA are equal.
X. Parallelograms on equal bases and between the same

parallels, are equal. (Proved.)
BGHA and BDKP are parallelograms, etc. (Construc-

tion.)
∴ BGHA and BDKP are equal.
XI. EBAF is equal to BGHA. (IX.)
BGHA is equal to BDKP . (X.)
∴ EBAF (that is the square on AB) is equal to BDKP .
XII. A similar argument from the commencement to

prove that the square on AC is equal to the rectangle CPK.
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XIII. The rectangles BK and CK are together equal to
the square on BC. (Self-evident from the construction.)

The squares on BA and AC are together equal to the
rectangles BK and CK. (Self-evident from XI. and XII.)
∴ The squares on BA and AC are together equal to the

square on BC.
Such is an outline of the process, every step of which

the student must pass through before he has understood the
demonstration. Many of these steps are not contained in the
book, because the most ordinary intelligence is sufficient to
suggest them, but the least is as necessary to the process
as the greatest. Instead of writing the propositions at this
length, the student is recommended to adopt the plan which
we now lay before him.

The explanation of this is as follows: the whole proposi-
tion is divided into distinct assertions, which are placed in
separate consecutive paragraphs, which paragraphs are num-
bered in the first column on the left; in the second column
on the left we state the reasons for each paragraph, either by
referring to the preceding paragraphs from which they fol-
low, or the preceding propositions in which they have been
proved. In the latter case a letter is placed in the column, and
at the end, the enunciation of the proposition there used is
written opposite to the letter. By this method, the proposi-
tion is much shortened, its more prominent parts are brought
immediately under notice, and the beginner, if he recollect
the preceding propositions perfectly well, is not troubled by
the repetition of prolix enunciations, while in the contrary
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Hyp. 1 ABC is a triangle, right-angled
at A.

Constr. 2 a On BA describe a square
BAFE.

3 a On BC describe a square.

4 Produce BD to meet EF ,
produced if necessary, in G.

5 b Through A draw HAK parallel
to BD.

Demonst. 6 2,Def. EBA is a right angle.

7 3 GBC is a right angle.

8 6, 7, c ∠EBG is equal to ∠ABC.

9 2, 1, d ∠BEG is equal to ∠BAC.

10 2 EB is equal to AB.

11 8, 9, 10, e The triangles BEG and ABC
are equal.

12 11, 3 BG is equal to BD.

13 5, 2,Def. AHGB is a parallelogram.

14 5, 3,Def. BPDK is a parallelogram.

15 13, 2, f AHGB and ABEF are equal.

16 13, 14, g AHGB and BPDK are equal.

17 15, 16 BPDK and the square on AB
are equal.

18

{
By similar
reasoning

}
CPK and the square on CA

are equal.

19 17, 18 The square on BC is equal to
the squares on BA and AC.
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a, b Here refer to the necessary problems.

c If two lines be drawn at right angles to two others, the
angles made by the first and second pair are equal.

d All right angles are equal.

e Two triangles which have two angles of one equal to
two angles of the other, and the interjacent sides
equal, are equal in all respects.

f, g Parallelograms on the same or equal bases, and
between the same parallels, are equal.

case he has them at hand for reference.
In all that has been said, we have taken instances only of

direct reasoning, that is, where the required result is imme-
diately obtained without any reference to what might have
happened if the result to be proved had not been true. But
there are many propositions in which the only possible result
is one of two things which cannot be true at the same time,
and it is more easy to show that one is not the truth, than
that the other is. This is called indirect reasoning; not that
it is less satisfactory than the first species, but because, as
its name imports, the method does not appear so direct and
natural. There are two propositions of which it is required to
show that whenever the first is true the second is true; that
is, the first being the hypothesis the second is a necessary
conclusion from it, whence the hypothesis in question, and
anything contradictory to, or inconsistent with, the conclu-
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sion cannot exist together. In indirect reasoning, we suppose
that, the original hypothesis existing and being true, some-
thing inconsistent with or contradictory to the conclusion
is true also. If from combining the consequences of these
two suppositions, something evidently erroneous or absurd
is deduced, it is plain that there is something wrong in the
assumptions. Now care is taken that the only doubtful point
shall be the one just alluded to, namely, the supposition that
one proposition and the contradictory of the other are true
together. This then is incorrect, that is, the first proposi-
tion cannot exist with anything contradictory to the second,
or the second must exist wherever the first exists, since if
any proposition be not true its contradictory must be true,
and vice versa. This is rather embarrassing to the begin-
ner, who finds that he is required to admit, for argument’s
sake, a proposition which the argument itself goes to destroy.
But the difficulty would be materially lessened, if instead of
assuming the contradictory of the second proposition posi-
tively, it were hypothetically stated, and the consequences
of it asserted with the verb “would be,” instead of “is.” For
example: suppose it to be known that if A is B, then C must
be D, and it is required to show indirectly that when C is
not D, A is not B. This put into the form in which such
a proposition would appear in most elementary works, is as
follows.

It being granted that if A is B, C is D, it is required
to show that when C is not D, A is not B. If possible, let
C be not D, and let A be B. Then by what is granted, since
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A is B, C is D; but by hypothesis C is not D, therefore both
C is D and is not D, which is absurd; that is, it is absurd to
suppose that C is not D and A is B, consequently when C is
not D, A is not B. The following, which is exactly the same
thing, is plainer in its language. Let C be not D. Then if
A were B, C would be D by the proposition granted. But by
hypothesis C is not D, etc. This sort of indirect reasoning
frequently goes by the name of reductio ad absurdum.

In all that has gone before we may perceive that
the validity of an argument depends upon two distinct
considerations,—(1) the truth of the relations assumed, or
represented to have been proved before; (2) the manner
in which these facts are combined so as to produce new
relations; in which last the reasoning properly consists. If
either of these be incorrect in any single point, the result
is certainly false; if both be incorrect, or if one or both be
incorrect in more points than one, the result, though not
at all to be depended on, is not certainly false, since it
may happen and has happened, that of two false reasonings
or facts, or the two combined, one has reversed the effect
of the other and the whole result has been true; but this
could only have been ascertained after the correction of the
erroneous fact or reasoning. The same thing holds good in
every species of reasoning, and it must be observed, that
however different geometrical argument may be in form from
that which we employ daily, it is not different in reality. We
are accustomed to talk of mathematical reasoning as above
all other, in point of accuracy and soundness. This, if by the
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term reasoning we mean the comparing together of different
ideas and producing other ideas from the comparison, is not
correct, for in this view mathematical reasonings and all
other reasonings correspond exactly. For the real difference
between mathematics and other studies in this respect we
refer the student to the first chapter of this treatise.

In what then, may it be asked, does the real advantage
of mathematical study consist? We repeat again, in the ac-
tual certainty which we possess of the truth of the facts on
which the whole is based, and the possibility of verifying
every result by actual measurement, and not in any superi-
ority which the method of reasoning possesses, since there
is but one method of reasoning. To pursue the illustration
with which we opened this work (page the first), suppose this
point to be raised, was the slaughter of Cæsar justifiable or
not? The actors in that deed justified themselves by saying,
that a tyrant and usurper, who meditated the destruction of
his country’s liberty, made it the duty of every citizen to put
him to death, and that Cæsar was a tyrant and usurper, etc.
Their reasoning was perfectly correct, though proceeding on
premisses then extensively, and now universally, denied. The
first premiss, though correctly used in this reasoning, is now
asserted to be false, on the ground that it is the duty of
every citizen to do nothing which would, were the practice
universal, militate against the general happiness; that were
each individual to act upon his own judgment, instead of
leaving offenders to the law, the result would be anarchy
and complete destruction of civilisation, etc. Now in these
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reasonings and all others, with the exception of those which
occur in mathematics, it must be observed that there are no
premisses so certain, as never to have been denied, no first
principles to which the same degree of evidence is attached
as to the following, that “no two straight lines can enclose a
space.” In mathematics, therefore, we reason on certainties,
on notions to which the name of innate can be applied, if it
can be applied to any whatever. Some, on observing that we
dignify such simple consequences by the name of reasoning,
may be loth to think that this is the process to which they
used to attach such ideas of difficulty. There may, perhaps,
be many who imagine that reasoning is for the mathemati-
cian, the logician, etc., and who, like the Bourgeois Gentil-
homme, may be surprised on being told, that, well or ill,
they have been reasoning all their lives. And yet such is the
fact; the commonest actions of our lives are directed by pro-
cesses exactly identical with those which enable us to pass
from one proposition of geometry to another. A porter, for
example, who being directed to carry a parcel from the city
to a street which he has never heard of, and who on inquiry,
finding it is in the Borough, concludes that he must cross
the water to get at it, has performed an act of reasoning,
differing nothing in kind from those by a series of which, did
he know the previous propositions, he might be convinced
that the square of the hypothenuse of a right-angled triangle
is equal to the sum of the squares of the sides.



CHAPTER XV.

ON AXIOMS.

Geometry, then, is the application of strict logic to those
properties of space and figure which are self-evident, and
which therefore cannot be disputed. But the rigor of this
science is carried one step further; for no property, however
evident it may be, is allowed to pass without demonstration,
if that can be given. The question is therefore to demonstrate
all geometrical truths with the smallest possible number of
assumptions. These assumptions are called axioms, and for
an axiom it is requisite: (1) that it should be self-evident;
(2) that it should be incapable of being proved from the
other axioms. In fulfilling these conditions, the number of
axioms which are really geometrical, that is, which have not
equal reference to Arithmetic, is reduced to two, viz., two
straight lines cannot enclose a space, and through a given
point not more than one parallel can be drawn to a given
straight line. The first of these has never been considered as
open to any objection; it has always passed as perfectly self-
evident.∗ It is on this account made the proposition on which

∗But see J. B. Stallo, Concepts and Theories of Modern Physics,
New York, 1884, p. 242, p. 208 et seq., and p. 248 et seq. For popu-
lar philosophical discussions of the subject of Axioms generally, in the
light of modern psychology and pangeometry, the reader may consult
the following works: Helmholtz’s “Origin and Meaning of Geometrical
Axioms,” Mind, Vol. III., p. 215, and the article in the same author’s
Popular Lectures on Scientific Subjects, Second Series, London, 1881,
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are grounded all reasonings relative to the straight line, since
the definition of a straight line is too vague to afford any
information. But the second, viz., that through a given point
not more than one parallel can be drawn to a given straight
line, has always been considered as an assumption not self-

pp. 27–71; W. K. Clifford’s Lectures and Essays, Vol. I., p. 297, p. 317;
Duhamel, Des Méthodes dans les Sciences de Raisonnement, Part 2;
and the articles “Axiom” and “Measurement” in the Encyclopedia Bri-
tannica, Vol. XV. See also Riemann’s Essay on the Hypotheses Which
Lie at the Basis of Geometry, a translation of which is published in
Clifford’s Works, pp. 55–69. For part of the enormous technical lit-
erature of this subject cf. Halsted’s Bibliography of Hyper-Space and
Non-Euclidean Geometry, American Journal of Mathematics, Vol. I.,
pp. 261 et seq., and Vol. II., pp. 65 et seq. Much, however, has been
written subsequently to the date of the last-mentioned compilation, and
translations of Lobachévski and Bolyai, for instance, may be had in the
Neomonic Series of Dr. G. B. Halsted (Austin, Texas). A full history
of the theory of parallels till recent times is given in Paul Stäckel’s
Theorie der Parallellinien von Euklid bis auf Gauss (Leipsic, 1895). Of
interest are the essays of Prof. J. Delbœuf on The Old and the New
Geometries (Revue Philosophique, 1893–1895), and those of Professor
Poincaré and of other controversialists in the recent volumes of the Re-
vue de Métaphysique et de Morale, where valuable bibliographical ref-
erences will be found to literature not mentioned in this note. See also
P. Tannery in the recent volumes of the Revue générale and the Revue
philosophique, Poincaré in The Monist for October, 1898, and B. A. W.
Russell’s Foundations of Geometry (Cambridge, 1897). In Grassmann’s
Ausdehnungslehre (1844), “assumptions” and “axioms” are replaced
by purely formal (logical) “predications,” which presuppose merely the
consistency of mental operations. (See The Open Court, Vol. II. p. 1464,
Grassmann, “A Flaw in the Foundation of Geometry,” and Hyde’s Di-
rectional Calculus, Ginn & Co., Boston). Dr. Paul Carus in his Primer
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evident in itself, and has therefore been called the defect
and disgrace of geometry. We proceed to place it on what
we conceive to be the proper footing.

By taking for granted the arithmetical axioms only, with
the first of those just alluded to, the following propositions
may be strictly shown.

I. One perpendicular, and only one, can be let fall from
any point A to a given line CD. Let this be AB.

II. If equal distances BC and BD be taken on both
sides of B, AC and AD are equal, as also the angles BAC
and BAD.

Fig. 6.

III. Whatever may be the length of BC and BD, the

of Philosophy (Chicago), p. 51 et seq., has treated the subject of Ax-
ioms at length, from a similar point of view. On the psychological
side, consult Mach’s Analysis of the Sensations (Chicago, 1897), and
the bibliographical references and related discussions in such works as
James’s Psychology and Jodl’s Psychology (Stuttgart, 1896).—Ed.
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angles BAC and BAD are each less than a right angle.
IV. Through A a line may be drawn parallel to CD (that

is, by definition, never meeting CD, though the two be ever
so far produced), by drawing any line AD and making the
angle DAE equal to the angle ADB, which it is before shown
how to do.

From proposition IV. we should at first see no reason
against there being as many parallels to CD, to be drawn
through A, as there are different ways of taking AD, since the
direction for drawing a parallel to CD is, “take any line AD
cutting CD and make the angle DAE equal to ADB.” But
this our senses immediately assure us is impossible.

It appears also a proposition to which no degree of doubt
can attach, that if the straight line AB, produced indefinitely
both ways, set out from the position AB and revolve round
the point A, moving first towards AE; then the point of inter-
section D will first be on one side of B and afterwards on the
other, and there will be one position where there is no point
of intersection either on one side or the other, and one such
position only. This is in reality the assumption of Euclid; for
having proved that AE and BF are parallel when the angles
BDA and DAE are equal, or, which is the same thing, when
EAD and ADF are together equal to two right angles, he
further assumes that they will be parallel in no other case,
that is, that they will meet when the angles EAD and ADF
are together greater or less than two right angles; which is
really only assuming that the parallel which he has found is
the only one which can be drawn. The remaining part of
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his axiom, namely, that the lines AE and DF , if they meet
at all, will meet upon that side of DA on which the angles
are less than two right angles, is not an assumption but a
consequence of his proposition which shows that any two an-
gles of a triangle are together less than two right angles, and
which is established before any mention is made of parallels.
It has been found by the experience of two thousand years
that some assumption of this sort is indispensable. Every
species of effort has been made to avoid or elude the diffi-
culty, but hitherto without success, as some assumption has
always been involved, at least equal, and in most cases su-
perior, in difficulty to the one already made by Euclid. For
example, it has been proposed to define parallel lines as those
which are equidistant from one another at every point. In
this case, before the name parallel can be allowed to belong
to any thing, it must be proved that there are lines such
that a perpendicular to one is always perpendicular to the
other, and that the parts of these perpendiculars intercepted
between the two are always equal. A proof of this has never
been given without the previous assumption of something
equivalent to the axiom of Euclid. Of this last, indeed, a
proof has been given, but involving considerations not usu-
ally admitted into geometry, though it is more than probable
that had the same come down to us, sanctioned by the name
of Euclid, it would have been received without difficulty. The
Greek geometer confines his notion of equal magnitudes to
those which have boundaries. Suppose this notion of equal-
ity extended to all such spaces as can be made to coincide
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entirely in all their extent, what ever that extent may be; for
example, the unbounded spaces contained between two equal
angles whose sides are produced without end, which by the
definition of equal angles might be made to coincide entirely
by laying the sides of one angle upon those of the other. In
the same sense we may say, that, one angle being double an-
other, the space contained by the sides of the first is double
that contained by the sides of the second, and so on. Now
suppose two lines Oa and Ob, making any angle with one

Fig. 7.

another, and produced ad infinitum.∗ On Oa take off the
equal spaces OP , PQ, QR, etc., ad infinitum, and draw the
lines Pp, Qq, Rr, etc., so that the angles OPp, OQq, etc.,

∗Every line in this figure must be produced ad infinitum, from that
extremity at which the small letter is placed.
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shall be equal to one another, each being such as with bOP
will make two right angles. Then Ob, Pp, Qq, etc., are par-
allel to one another, and the infinite spaces bOPp, pPQq,
qQRr, etc., can be made to coincide, and are equal. Also no
finite number whatever of these spaces will fill up the infinite
space bOa, since OP , PQ, etc., may be contained ad infini-
tum upon the line Oa. Let there be any line Ot, such that
the angles tOP and pPO are together less than two right
angles, that is, less than bOP and pPO; whence tOP is less
than bOP and tO falls between bO and aO. Take the angles
tOv, vOw, wOx, each equal to bOt, and continue this un-
til the last line Oz falls beneath Oa, so that the angle bOz
is greater than bOa. That this is possible needs no proof,
since it is manifest that any angle being continually added
to itself the sum will in time exceed any other given angle;
again, the infinite spaces bOt, tOv, etc., are all equal. Now
on comparing the spaces bOt and bOPp, we see that a cer-
tain number of the first is more than equal to the space bOa,
while no number whatever of the second is so great. We con-
clude, therefore, that the space bOt is greater than bOPp,
which cannot be unless the line Ot cuts Pp at last; for if
Ot did never cut Pp, the space bOt would evidently be less
than bOPp, as the first would then fall entirely within the
second. Therefore two lines which make with a third angles
together less than two right angles will meet if sufficiently
produced. [See Note on page 241.]

This demonstration involves the consideration of a new
species of magnitude, namely, the whole space contained by
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the sides of an angle produced without limit. This space
is unbounded, and is greater than any number whatever of
finite spaces, of square feet, for example. No comparison,
therefore, as to magnitude can be instituted between it and
any finite space whatever, but that affords no reason against
comparing this magnitude with others of the same kind.

Any thing may become the subject of mathematical rea-
soning, which can be increased or diminished by other things
of the same kind; this is, in fact, the definition given of the
term magnitude; and geometrical reasoning, in all other cases
at least, can be applied as soon as a criterion of equality is
discovered. Thus the angle, to beginners, is a perfectly new
species of magnitude, and one of whose measure they have
no conception whatever; they see, however, that it is capable
of increase or diminution, and also that two of the kind can
be equal, and how to discover whether this is so or not, and
nothing more is necessary for them. All that can be said of
the introduction of the angle in geometry holds with some,
(to us it appears an equal force,) with regard to these unlim-
ited spaces; the two are very closely connected, so much so,
that the term angle might even be defined as “the unlimited
space contained by two right lines,” without alteration in
the truth of any theorem in which the word angle is found.
But this is a point which cannot be made very clear to the
beginner.

The real difficulties of geometry begin with the theory
of proportion, to which we now proceed. The points of dis-
cussion which we have hitherto raised, are not such as to
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embarrass the elementary student, however much they may
perplex the metaphysical inquirer into first principles. The
theory to which we are coming abounds in difficulties of both
classes.

[Note to Page 239.—The demonstration given on pp. 237–

239 is now regarded as fallacious by mathematicians; the consid-

erations that apply to finite aggregates not being transferable to

infinite aggregates,—for example, it is not true for infinite aggre-

gates that the part is always less than the whole. Even Plato is

cited for the assertion that equality is only to be predicated of

finite magnitudes. See the modern works on the Theory of the

Infinite. The demonstration in question is not De Morgan’s, but

M. Bertrand’s.—Ed.]



CHAPTER XVI.

ON PROPORTION.

In the first elements of geometry, two lines, or two surfaces,
are mentioned in no other relation to one another than that
of equality or non-equality. Nothing but the simple fact is
announced that one magnitude is equal to, greater than, or
less than another, except occasionally when the sum of two
equal magnitudes is said to be double one of them. Thus
in proving that two sides of a triangle are together greater
than the third, the fact that they are greater is the essence
of the proposition; no measure is given of the excess, nor
does anything follow from the theorem as to whether it is,
or may be, small or great. We now come to the doctrine of
proportion in which geometrical magnitude is considered in
a new light. The subject has some difficulties, which have
been materially augmented by the almost universal use, in
this country at least,∗ of the theory laid down in the fifth
book of Euclid.† Considered as a complete conquest over
a great and acknowledged difficulty of principle, this book
of Euclid well deserves the immortality of which its exis-
tence, at the present moment, is the guarantee; nay, had
the speculations of the mathematician been wholly confined
to geometrical magnitude, it might be a question whether
any other notions would be necessary. But when we come

∗In England.
†See Todhunter’s Euclid (Macmillan, London).—Ed.
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to apply arithmetic to geometry, it is necessary to examine
well the primary connexion between the two; and here diffi-
culties arise, not in comprehending that connexion so much
as in joining the two sciences by a chain of demonstration
as strong as that by which the propositions of geometry are
bound together, and as little open to cavil and disputation.

The student is aware that before pronouncing upon the
connexion of two lines with one another, it is necessary to
measure them, that is, to refer them to some third line, and
to observe what number of times the third is contained in
the other two. Whether the two first are equal or not is
readily ascertained by the use of the compasses, on principles
laid down with the utmost strictness in Euclid and other
elementary works. But this step is not sufficient; to say that
two lines are not equal, determines nothing. There are an
infinite number of ways in which one line may be greater or
less than a given line, though there is only one in which the
other can be equal to the given one. We proceed to show
how, from the common notion of measuring a line, the more
strict geometrical method is derived.

To measure the line AB, apply to it another line (the
edge of a ruler), which is divided into equal parts (as
inches), each of which parts is again subdivided into ten
equal parts, as in the figure. This division is made to take
place in practice until the last subdivision gives a part
so small that anything less may be neglected as inconsid-
erable. Thus a carpenter’s rule is divided into tenths or
eighths of inches only, while in the tube of a barometer
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a process must be employed which will mark a much less
difference. In talking of accurate measurement, therefore,
anywhere but in geometry, or algebra, we only mean accurate

Fig. 8.

as far as the senses are concerned, and as far as
is necessary for the object in view. The ruler
in the figure shows that the line AB contains
more than two and less than three inches; and
closer inspection shows that the excess above
two inches is more than sixth-tenths of an inch,
and less than seven. Here, in practice, the pro-
cess stops; for, as the subdivision of the ruler
was carried only to tenths of inches, because a
tenth of an inch is a quantity which may be ne-
glected in ordinary cases, we may call the line
two inches and six-tenths, by doing which the

error committed is less than one-tenth of an inch. In this
way lines may be compared together with a common degree
of correctness; but this is not enough for the geometer. His
notions of accuracy are not confined to tenths or hundredths,
or hundred-millionth parts of any line, however small it may
be at first. The reason is obvious; for although to suit the eye
of the generality of readers, figures are drawn in which the
least line is usually more than an inch, yet his theorems are
asserted to remain true, even though the dimensions of the
figure are so far diminished as to make the whole impercepti-
ble in the strongest microscope. Many theorems are obvious
upon looking at a moderately-sized figure; but the reasoning
must be such as to convince the mind of their truth when,



on proportion. 245

from excessive increase or diminution of the scale, the figures
themselves have past the boundary even of imagination. The
next step in the process of measurement is as follows, and
will lead us to the great and peculiar difficulty of the subject.

The inch, the foot, and the other lengths by which we
compare lines with one another, are perfectly arbitrary.
There is no reason for their being what they are, unless we
adopt the commonly received notion that our inch is derived
from our Saxon ancestors, who observed that a barley corn
is always of the same length, or nearly so, and placed three
of them together as a common standard of measure, which
they called an inch. Any line whatever may be chosen as
the standard of measure, and it is evident that when two
or more lines are under consideration, exact comparisons
of their lengths can only be obtained from a line which is
contained an exact number of times in them all. For even
exact fractional measures are reduced to the same denom-
inator, in order to compare their magnitudes. Thus, two
lines which contain 2

11
and 3

7
of a foot, are better compared

by observing that 2
11

and 3
7

being 14
77

and 33
77

, the given lines
contain one 77th part of a foot 14 and 33 times respectively.
Any line which is contained an exact number of times in
another is called in geometry a measure of it, and a common
measure of two or more lines is that which is contained an
exact number of times in each.

Again, a line which is measured by another is called a
multiple of it, as in arithmetic.

The same definition, mutatis mutandis, applies to sur-
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faces, solids, and all other magnitudes; and though in our
succeeding remarks we use lines as an illustration, it must
be recollected that the reasoning applies equally to every
magnitude which can be made the subject of calculation.

In order that two quantities may admit of comparison as
to magnitude, they must be of the same sort; if one is a line,
the other must be a line also. Suppose two lines A and B
each of which is measured by the line C; the first containing
it five times and the second six. These lines A and B, which
contain the same line C five and six times respectively, are
said to have to one another the ratio of five to six, or to be
in the proportion of five to six. If then we denote the first
by A,∗ and the second by B, and the common measure by C,

∗The student must distinctly understand that the common meaning
of algebraical terms is departed from in this chapter, wherever the
letters are large instead of small. For example, A, instead of meaning
the number of units of some sort or other contained in the line A, stands
for the line A itself, and mA (the small letters throughout meaning
whole numbers) stands for the line made by taking A, m times. Thus
such expressions asmA+B, mA−nB, etc., are the only ones admissible.

AB,
A

B
, A2, etc., are unmeaning, while

A

m
is the line which is contained

m times in A, or the mth part of A. The capital letters throughout
stand for concrete quantities, not for their representations in abstract
numbers.
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we have

A = 5C, or 6A = 30C,

B = 6C, or 5B = 30C,

whence 6A = 5B, or 6A− 5B = 0.

Generally, when mA − nB = 0, the lines, or whatever
they are, represented by A and B, are said to be in the
proportion of n to m, or to have the ratio of n to m.

Let there be two other magnitudes P and Q, of the same
kind with one another, either differing from the first in kind
or not, (thus A and B may be lines, and P and Q surfaces,
etc.,) and let them contain a common measure R, just as
A and B contain C, viz.: Let P contain R five times, and
let Q contain R six times, we have by the same reasoning

6P − 5Q = 0,

and P and Q, being also in the ratio of five to six, as well as
A and B, are said to be proportional to A and B, which is
denoted thus

A : B :: P : Q,

by which at present all we mean is this, that there are some
two whole numbers m and n such that, at the same time

mA− nB = 0,

mP − nQ = 0.
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Fig. 9.

Nothing more than this would
be necessary for the formation
of a complete theory of propor-
tion, if the common measure,
which we have supposed to ex-
ist in the definition, did always
really exist. We have, however,
no right to assume that two
lines A and B, whatever may be
their lengths, both contain some
other line an exact number of
times. We can, moreover, pro-
duce a direct instance in which
two lines have no common mea-

sure what ever, in the following manner.
Let ABC be an isosceles right-angled triangle, the

side BC and the hypothenuse have no common measure
whatever. If possible let D be a common measure of BC
and AB; let BC contain D, n times, and let AB contain D,
m times. Let E be the square described on D. Then since
AB contains D, m times, the square described on AB con-
tains, m × m or m2 times. Similarly the square described
on BC contains E n×n or n2 times. But, because AB is an
isosceles right-angled triangle, the square on AB is double
that on BC, whence m × m = 2(n × n) or m2 = 2n2. To
prove the impossibility of this equation (when m and n are
whole numbers), observe that m2 must be an even number,
since it is twice the number n2. But m×m cannot be an even
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number unless m is an even number, since an odd number
multiplied by itself produces an odd number.∗ Let m (which
has been shown to be even) be double m′ or m = 2m′.
Then 2m′ × 2m′ = 2n2 or 4m′2 = 2n2 or n2 = 2m′2. By
repeating the same reasoning we show that n is even. Let it
be 2n′. Then 2n′ × 2n′ = 2m′2 or m′2 = 2n′2. By the same
reasoning m′ and n′ are both even, and so on ad infinitum.
This reasoning shows that the whole numbers which satisfy
the equation n2 = 2m2 (if such there be) are divisible by 2
without remainder, ad infinitum. The absurdity of such
a supposition is manifest: there are then no such whole
numbers, and consequently no common measure to BA
and BC.

Before proceeding any further, it will be necessary to es-
tablish the following proposition.

If the greater of two lines A andB be divided intom equal
parts, and one of these parts be taken away; if the remainder
be then divided into m equal parts, and one of them be taken
away, and so on,—the remainder of the line A shall in time
become less than the line B, how small soever the line B
may be.

Take a line which is less than B, and call it C. It is
evident that, by a continual addition of the same quantity

∗Every odd number, when divided by 2, gives a remainder 1, and
is therefore of the form 2p + 1 where p is a whole number. Multiply
2p+ 1 by itself, which gives 4p2 + 4p+ 1, or 2(2p2 + 2p) + 1, which is an
odd number, since, when divided by 2, it gives the quotient 2p2 + 2p,
a whole number, and the remainder 1.
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to C, this last will come in time to exceed A; and still more
will it do so if the quantity added to C be increased at each
step. To simplify the proof we suppose that 20 is the number
of equal parts into which A and its remainders are succes-
sively divided, so that 19 out of the 20 parts remain after
subtraction.

Divide C into 19 equal parts and add to C a line equal
to one of these parts. Let the length of C, so increased,
be C ′. Divide C ′ into 19 equal parts and let C ′, increased
by its 19th part, be C ′′. Now, since we add more and more
each time to C, in forming C ′, C ′′, etc, we shall in time
exceed A. Let this have been done, and let D be the line
so obtained, which is greater than A. Observe now that
C ′ contains 19, and C ′′, 20 of the same parts, whence C ′ is
made by dividing C ′′ into 20 parts and removing one of them.
The same of all the rest. Therefore we may return from D
to C by dividing D into 20 parts, removing one of them,
and repeating the process continually. But C is less than B
by hypothesis. If then we can, by this process, reduce D
below B, still more can we do so with A, which is less than D,
by the same method.

This depends on the obvious truth, that if, at the end
of any number of subtractions (D being taken), we have

left
p

q
D, at the end of the same number of subtractions

(A being taken), we shall have
p

q
A, since the method pur-

sued in both cases is the same. But since A is less than D,
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p

q
A is less than

p

q
D, which becomes equal to C, therefore

p

q
A becomes less than C.∗

We now resume the isosceles right-angled triangle. The
lines BC and AB, which were there shown to have no com-
mon measure, are called incommensurable quantities, and to
their existence the theory of proportion owes its difficulties.
We can nevertheless show that A and B being incommen-
surable, a line can be found as near to B as we please, ei-
ther greater or less, which is commensurable with A. Let
D be any line taken at pleasure, and therefore as small as
we please. Divide A into two equal parts, each of those parts
into two equal parts, and so on. We shall thus at last find a
part of A which is less than D. Let this part be E, and let it
be contained m times in A. In the series E, 2E, 3E, etc., we
shall arrive at last at two consecutive terms, pE and (p+1)E
of which the first is less, and the second greater than B. Nei-
ther of these differs from B by so much as E; still less by so

∗Algebraically, let a be the given line, and let
1

m
th part of the

remainder be removed at every subtraction. The first quantity taken

away is
a

m
and the remainder a− a

m
or a

(
1− 1

m

)
, whence the second

quantity removed is
a

m

(
1− 1

m

)
, and the remainder

(
1− a

m

)(
1− 1

m

)
or a

(
1− 1

m

)2
. Similarly, the nth remainder is a

(
1− 1

m

)n
. Now, since

1 − 1

m
is less than unity, its powers decrease, and a power of so great

an index may be taken as to be less than any given quantity.
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much as D; and both pE and (p + 1)E are commensurable
with A, that is with mE, since E is a common measure of
both. If therefore A and B are incommensurable, a third
magnitude can be found, either greater or less than B, dif-
fering from B by less than a given quantity, which magnitude
shall be commensurable with A.

We have seen that when A and B are incommensurable,
there are no whole values of m and n, which will satisfy the
equation mA − nB = 0; nevertheless, we can prove that
values of m and n can be found which will make mA − nB
less than any given magnitude C, of the same kind, how
small soever it may be. Suppose, that for certain values of
m and n,∗ we find mA− nB = E, and let the first multiple
of E, which is greater than B, be pE, so that pE = B + E ′

where E ′ is less than E, for were it greater, (p − 1)E or

∗It is necessary here to observe, that in speaking of the expression
mA−nB we more frequently refer to its form than to any actual value
of it, derived from supposing m and n to have certain known values.
When we say that mA − nB can be made smaller than C, we mean
that some values can be given to m and n such that mA − nB < C,
or that some multiple of B subtracted from some multiple of A is less
than C. The following expressions are all of the same form, viz., that
of some multiple of B subtracted from some multiple of A:

mA− nB,
mpA− (np+ 1)B,

2mA− 4mB, etc., etc.
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pE − E, which is B + (E ′ − E), would be greater than B,
which is against the supposition.

The equation mA− nB = E gives

pmA− pnB = pE = B + E ′,

whence
pmA− (pn+ 1)B = E ′.

Let
pm = m′ and pn+ 1 = n′,

whence
m′A− n′B = E ′.

We have therefore found a difference of multiples which is
less than E. Let p′E ′ be the first multiple of E ′ which is
greater than B, where p′ must be at least as great as p, since
E being greater than E ′, it cannot take more∗ of E than
of E ′ to exceed B. Let

p′E ′ = B + E ′′,

then, as before,

m′p′A− (n′p′ + 1)B = E ′′,

or
m′′A− n′′B = E ′′;

∗It may require as many. Thus it requires as many of 7 as of 8 to
exceed 33, though 7 is less than 8.
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we have therefore still further diminished the difference of
the multiples; and the process may be repeated any number
of times; it only remains to show that the diminution may
proceed to any extent.

This will appear superfluous to the beginner, who will
probably imagine that a quantity diminished at every step,
must, by continuing the number of steps, at last become as
small as we please. Nevertheless if any number, as 10, be
taken and its square root extracted, and the square root of
that square root, and so on, the result will not be so small
as unity, although ten million of square roots should have
been extracted. Here is a case of continual diminution, in
which the diminution is not without limit. Again, from the
point D in the line AB draw DE, making an angle with AB
less than half a right angle. Draw BE perpendicular to AB,

Fig. 10.

and take BC = BE. Draw CF perpendicular to AB, and
take CC ′ = CF , and so on. The points C, C ′, C ′′, etc., will
always be further from A than D is; and all the lines AC,
AC ′, AC ′′, etc., though diminished at every step, will al-
ways remain greater than AD. Some such species of diminu-
tion, for anything yet proved to the contrary, may take place
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in mA− nB.
To compare the quantities E, E ′, etc., we have the equa-

tions

pE = B + E ′,

p′E ′ = B + E ′′,

p′′E ′′ = B + E ′′′,

etc., etc.

The numbers p, p′, p′′, etc., do not diminish; the lines E,
E ′, E ′′, etc., diminish at every step. If then we can show
that p, p′, etc., can only remain the same for a finite number
of steps, and must then increase, and after the increase can
only remain the same for another finite number of steps,
and then must increase again, and so on, we show that the
process can be continued, until one of them is as great as
we please; let this be p(z), where z is not an exponent, but
marks the number which our notation will have reached, and
indicates the (z + 1)th step of the process. Let E(z) be the
corresponding remainder from the former step. Then, since
p(z)E(z) is the first multiple of E(z), which exceeds the given
quantity B, if p(z) can be as great as we please, E(z) can be
as small as we please. To show that p(z) can be as great as we
please, observe, that p, p′, p′′, etc., must remain the same, or
increase, since, as appears from their method of formation,
they cannot diminish. Let them remain the same for some
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steps, that is, let p = p′ = p′′, etc. The equations become

pE = B + E ′,

pE ′ = B + E ′′,

pE ′′ = B + E ′′′,

etc., etc.

Then by subtraction,

E ′ − E ′′ = p(E − E ′),
E ′′ − E ′′′ = p(E ′ − E ′′) = pp(E − E ′),
E ′′′ − E ′′′′ = p(E ′′ − E ′′′) = ppp(E − E ′),

etc., etc.

Now,

E − E′′ = E − E′ + E′ − E′′ = (E − E′)(1 + p),

E − E′′′ = E − E′ + E′ − E′′ + E′′ − E′′′ = (E − E′)(1 + p+ p2),

etc., etc., etc.

Generally,

E − E(w) = E − E ′ + E ′ − E ′′ + · · ·+ E(w−1) − E(w)

= (E − E ′)(1 + p+ p2 + · · ·+ pw−1),

which is derived from w steps of the process. Now, if this can
go on ad infinitum, it can go on until 1 + p+ p2 + · · ·+ pw−1

is as great as we please; for, since p is not less than unity,
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the continual addition of its powers will, in time, give a sum
exceeding any given number. This is absurd, from the step at
which 1+p+p2+· · ·+pw−1 becomes greater than the number
of times which E−E ′ is contained in E; for, from the above
equation, E−E ′ is contained in E−E(w), 1+p+p2+· · ·+pw−1
times; and it is contradictory to suppose that E−E ′ should
be contained in E − E(w) more times than it is contained
in E.

To take an example: suppose that B is 55 feet, and E is
54 feet; the first equation is

2× 54f = 55f + 53f ,

where E ′ = 53f and E − E ′ = 1f , and is contained in E
54 times. If, then, we continue the process, 2 cannot main-
tain its present place through so many steps of the pro-
cess as will, if the same number of terms be taken, give
1 + 2 + 22 + 23 + etc., greater than 54; that is, it cannot
be the same for six steps. And we find, on actually perform-
ing the operations,

2× 54f = 55 + 53f ,

2× 53f = 55 + 51f ,

2× 51f = 55 + 47f ,

2× 47f = 55 + 39f ,

2× 39f = 55 + 23f ,

3× 23f = 55 + 14f .
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We do not say that p, p′, etc., will remain the same un-
til 1 + p + p2 + . . . would be greater than the number of
times which E contains E − E ′, but only that they cannot
remain the same longer. By repetition of the same process,
we can show that a further and further increase must take
place, and so on until we have attained a quantity greater
than any given one. And it has already been shown to be
a consequence of this, that mA − nB can be diminished to
any extent we please. Similarly it may be shown that when
A and B are incommensurable, mA−nB may be brought as
near as we please to any other quantity C, of the same kind
as A and B, so as not to differ from C by so much as a given
quantity E. For let m and n be taken, by the last case, so
that mA−nB may be less than E, and let mA−nB, in this
case, be equal to E ′. Let C lie between pE ′ and (p + 1)E ′,
neither of which can differ from C by so much as E ′, and
therefore not by so much as E. Then since

mA− nB = E ′;

therefore
pmA− pnB = pE ′,

and
(p+ 1)mA− (p+ 1)nB = (p+ 1)E ′.

Both which last expressions differ from C by a quantity less
than E, the first being less and the second greater than C,
and both are of the form mA−nB, m and n being changed
for other numbers.
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The common ideas of proportion are grounded entirely
upon the false notion that all quantities of the same sort
are commensurable. That the supposition is practically cor-
rect, if there are any limits to the senses, may be shown,
for let any quantity be rejected as imperceptible, then since
a quantity can be found as near to B as we please, which
is commensurable with A, the difference between B and its
approximate commensurable magnitude, may be reduced be-
low the limits of perceptible quantity. Nevertheless, inaccu-
racy to some extent must infest all general conclusions drawn
from the supposition that A and B being two magnitudes,
whole numbers, m and n, can always be found such that
mA − nB = 0. We have shown that this can be brought
as near to the truth as we please, since mA − nB can be
made as small as we please. This, however, is not a perfect
answer, at least it wants the unanswerable force of all the
preceding reasonings in geometry. A definition of proportion
should therefore be substituted, which, while it reduces itself,
in the case of commensurable quantities to the one already
given, is equally applicable to the case of incommensurables.
We proceed to examine the definition already given with a
view to this object.

Resume the equations

mA− nB = 0, or A =
n

m
B,

mP − nQ = 0, or P =
n

m
Q.
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If we take any other expression of the same sort
n′

m′
B and

n′

m′
Q, it is plain that, according as the arithmetical frac-

tion
n

m
is greater than, equal to, or less than

n′

m′
, so will

n

m
B be greater than, equal to, or less than

n′

m′
B, and the

same of
n

m
Q and

n′

m′
Q. Let the symbol

x
z

}
>=<

{
y
w

be the abbreviation of the following sentence: “when x is
greater than y, z is greater than w; when x is equal to y,
z is equal to w; when x is less than y, z is less than w.” The
following conclusions will be evident:

If
a
c

}
>=<

{
b
d

and
a
e

}
>=<

{
b
f,

then
c
e

}
>=<

{
d
f.

(1)

And from the first of these alone it follows that

ma
nc

}
>=<

{
mb
nd.

(2)



on proportion. 261

We have just noticed the following:

n

m

n

m
B

 >=<


n′

m′

n′

m′
B

and

n

m

n

m
Q

 >=<


n′

m′

n′

m′
Q.

Therefore (1)

n

m
B

n

m
Q

 >=<


n′

m′
B

n′

m′
Q

or
A
P

}
>=<


n′

m′
B

n′

m′
Q.

Therefore (2)
m′A
m′P

}
>=<

{
n′B
n′Q.

Or, if four magnitudes are proportional, according to the
common notion, it follows that the same multiples of the first
and third being taken, and also of the second and fourth,
the multiple of the first is greater than, equal to, or less
than, that of the second, according as that of the third is
greater than, equal to, or less than, that of the fourth. This
property∗ necessarily follows from the equations

mA− nB = 0,

mP − nQ = 0,

∗It would be expressed algebraically by saying that if mA−nB and
mP − nQ are nothing for the same values of m and n, they are either
both positive or both negative, for every other value of m and n.
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but it does not therefore follow that the equations are nec-
essary consequences of the property, since the latter may
possibly be true of incommensurable quantities, of which,
by definition, the former is not. The existence of this prop-
erty is Euclid’s definition of proportion: he says, let four
magnitudes, two and two, of the same kind, be called pro-
portional, when, if equi-multiples be taken of the first and
third, etc., repeating the property just enunciated. What is
lost and gained by adopting Euclid’s definition may be very
simply stated; the gain is an entire freedom from all the dif-
ficulties of incommensurable quantities, and even from the
necessity of inquiring into the fact of their existence, and the
removal of the inaccuracy attending the supposition that, of
two quantities of the same kind, each is a determinate arith-
metical fraction of the other; on the other hand, there is no
obvious connexion between Euclid’s definition and the ordi-
nary and well-established ideas of proportion; the definition
itself is made to involve the idea of infinity, since all possible
multiples of the four quantities enter into it; and lastly, the
very existence of the four quantities, called proportional, is
matter for subsequent demonstration, since to a beginner it
cannot but appear very unlikely that there are any magni-
tudes which satisfy the definition. The last objection is not
very strong, since the learner could read the first proposition
of the sixth book immediately after the definition, and would
thereby be convinced of the existence of proportionals; the
rest may be removed by showing another definition, more in
consonance with common ideas, and demonstrating that, if



on proportion. 263

four magnitudes fall under either of these definitions, they
fall under the other also. The definition which we propose is
as follows: “Four magnitudes, A, B, P , and Q, of which B is
of the same kind as A, and Q as P , are said to be propor-
tional, if magnitudes B+C and Q+R can be found as near
as we please to B and Q, so that A, B + C, P and Q + R,
are proportional according to the common notion, that is, if
whole numbers m and n can satisfy the equations

mA− n(B + C) = 0,

mP − n(Q+R) = 0.”

We have now to show that Euclid’s definition follows from
the one just given, and also that the last follows from Eu-
clid’s, that is, if there are four magnitudes which fall under
either definition, they fall under the other also. Let us first
suppose that Euclid’s definition is true of A, B, P , and Q,
so that

mA
mP

}
>=<

{
nB
nQ.

This being true, it will follow that we can take m and n, so
as not only to make mA−nB less than a given magnitude E,
which may be as small as we please, but also so that mP−nQ
shall at the same time be less than a given magnitude F ,
however small this last may be. For if not, while m and n
are so taken as to make mA− nB less than E (which it has
been proved can be done, however small E may be) suppose,
if possible, that the same values of m and n will never make
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mP − nQ less than some certain quantity F , and let E be
the first multiple of F which exceeds Q, and also let E be
taken so small that pE shall be less than B, still more then
shall p(mA−nB), or pmA− pnB be less than B. But since
pF is greater than Q, and mP −nQ is by hypothesis greater
than F , still more shall mpP − npQ be greater than Q. We
have then, if our last supposition be correct, some value of
mp and np, for which

mpA− npB is less than B,

while
mpP − npQ is greater than Q,

or

mpA is less than (np+ 1)B,

mpP is greater than (np+ 1)Q,

which is contrary to our first hypothesis respecting A, B, P ,
and Q, that hypothesis being Euclid’s definition of propor-
tion, from which if

mpA is less than (np+ 1)B,

mpP is less than (np+ 1)Q.

We must therefore conclude that if the four quantities A, B,
P , and Q satisfy Euclid’s definition of proportion, then
m and n may be so taken that mA−nB and mP −nQ shall
be as small as we please.
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Let

mA− nB = E and E = nC,

mP − nQ = F and F = nR.

Then

mA− n(B + C) = 0,

mP − n(Q+R) = 0,

and since E and F can, by properly assuming m and n,
be made as small as we please, much more can the same be
done with C and R, consequently we can produce B+C and
Q+R as near as we please to B and Q, and proportional to
A and P , according to the common arithmetical notion. In
the same way it may be proved, that on the same hypothesis
B − C and Q − R can be found as near to B and Q as we
please, and so that A, B−C, P and Q−R are proportional
according to the ordinary notion. It only remains to show
that if the last-mentioned property be assumed, Euclid’s def-
inition of proportion will follow from it. That is, if quantities
can be exhibited as near to P and Q as we please, which are
proportional to A and B, according to the ordinary notion,
it follows that

mA
mP

}
>=<

{
nB
nQ.

For let B + C and Q+R be two quantities, such that

fA− g(B + C) = 0,

fP − g(Q+R) = 0,
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in which, by the hypothesis, f and g can be so taken that C
and R are as small as we please. We have already shown that
in this case (m and n being any numbers whatever) mA is
never greater or less than n(B + C), without mP being at
the same time the same with regard to n(Q+R). That is, if

mA is greater than nB + nC,

then
mP is greater than nQ+ nR.

Take some given∗ values for m and n, fulfilling the first con-
dition; then, since C and R may be as small as we please,
the same is true of nC and nR; if then

mA is greater than nB,

mP is greater than nQ.

For if not, let mA = nB + x, while mP = nQ − y, x and y
being some definite magnitudes. Then if

nB + x > nB + nC,

nQ− y > nQ+ nR,

∗It is very necessary to recollect that the relations just expressed are
true for every value of m and n; and therefore true for any particular
case. In this investigation f and g may both be very great in order
that C and R may be sufficiently small, and we must suppose them to
vary with the values we give to C and R, or rather the limits which we
assign to them; but m and n are given.
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which last equation is evidently impossible; therefore if
mA > nB, mP > nQ. In the same way it may be proved
that if mA < nB, mP < nQ, etc., so that Euclid’s definition
is shown to be a necessary consequence of the one proposed.

The definition of proportion which we have here given,
and the methods by which we have established its identity
with the one in use, bear a close analogy to the process used
by the ancients, and denominated by the moderns the method
of exhaustions. We have seen that the common definition of
proportion fails in certain cases where the magnitudes are
what we have called incommensurable, but at the same time
we have shown that though in this case we can never take
m and n, so that mA = nB, or mA − nB = 0, we can
nevertheless find m and n, so that mA shall differ from nB
by a quantity less than any which we please to assign. We
therefore extend the definition of the word proportion, and
make it embrace not only those magnitudes which fulfil a
given condition, but also others, of which it is impossible
that they should fulfil that condition, provided always, that
whatever magnitudes we call by the name of proportionals,
they must be such as to admit of other magnitudes being
taken as near as we please to the first, which are propor-
tional, according to the common arithmetical notion. It is
on the same principle that in algebra we admit the existence
of such a quantity as

√
2, and use it in the same manner as a

definite fraction, although there is no such fraction in reality
as, multiplied by itself, will give 2 as the product. But, how-
ever small a quantity we may name, we can assign a fraction
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which, multiplied by itself, shall differ less from 2 than that
quantity.

Having established the properties of rectilinear figures,
as far as their proportions are concerned, it is necessary to
ascertain the properties of curvilinear figures in this respect.
And here occurs a difficulty of the same kind as that which
met us at the outset, for no rectilinear figure, how small
soever its sides may be, or how great soever their number,
can be called curvilinear. Nevertheless, it may be shown that
in every curve a rectilinear figure may be inscribed, whose
area and perimeter shall differ from the area and perimeter of
the curve by magnitudes less than any assigned magnitudes.
The circle is the only curve whose properties are considered
in elementary geometry, and the proposition in question is
discussed in all standard treatises on geometry. Indeed, for
this or any other curve the proposition is almost self-evident.
This being granted, the properties of curvilinear figures are
established by help of the following theorem.

If A, B, C, and D are always proportional, and of these,
if C and D may be made as near as we please to P and Q,
than which they are always both greater or both less, then
A, B, P , and Q are proportional.

Let C = P + P ′, and D = Q + Q′, where by hypothesis
P ′ and Q′ may be made as small as we please, and A, B,
P + P ′, and Q + Q′ are proportionals. If A, B, P , and Q
are not proportionals, let P and Q + R be proportional to
A and B. Then, since A and B are proportional to P + P ′
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and Q+Q′, and also to P and Q+R, therefore

P + P ′ : Q+Q′ :: P : Q+R

in which all the magnitudes are of the same kind. Now let
P ′ and Q′ be so taken that Q′ is less than R, which may be
done, since by hypothesis Q′ can be as small as we please.
Hence Q+Q′ is less than Q+R, and therefore P +P ′ is less
than P , which is absurd. In the same way it may be proved
that P is not to Q−R in the proportion of A to B, and conse-
quently P is to Q in the proportion of A to B. This theorem,
with those which prove that the surfaces, solidities, areas,
and lengths, of curve lines and surfaces, may be represented
as nearly as we please by the surfaces, etc., of rectilinear fig-
ures and solids, form the method of exhaustions.∗ In this
method are the first germs of that theory which, under the
name of Fluxions, or the Differential Calculus, contains the
principles of all the methods of investigation now employed,
whether in pure or mixed mathematics.

∗For a classical example, see Prop. II. of the twelfth book of Euclid
(Simson’s edition). Consult also Beman and Smith’s Plane and Solid
Geometry (Ginn & Co., Boston), pp. 144–145, and 190.—Ed.



CHAPTER XVII.

APPLICATION OF ALGEBRA TO THE MEASUREMENT
OF LINES, ANGLES, PROPORTION OF

FIGURES, AND SURFACES.

We have already defined a measure, and have noticed several
instances of magnitudes of one kind being measured by those
of another. But the most useful measure, and that with
which we are most familiar, is number. We express one line
by the number of times which another line is repeated in
it, or if the second is not exactly contained in the first, by
the greatest number of the second contained in the first,
together with the fraction of the second, which will complete
the first. Thus, suppose the line A contains B m times, with
a remainder which can be formed by dividing B into q parts,
and taking p of them. Then B is to A in the proportion of

1 to m+
p

q
, or as q to mq+ p, and if B be a fixed line, which

is used for the comparison of all lines whatsoever, then the

line A is m+
p

q
, or

mq + p

q
, if it be understood that for every

unit in m, B is to be taken, and also that for
p

q
the same

fraction of B is to be taken that
p

q
is of unity. In this case

B is called the linear unit.
But here we suppose that a line B being taken, the ratio

of any other line A to B can be expressed by that of the whole
numbersmq+p to q, which we have shown in some cases to be
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impossible. If we take one of these cases, mA−nB, though it
can never be made equal to nothing, can be made as small as
we please, by properly assumingm and n. LetmA−nB = E,

then A =
n

m
B +

E

m
, and since

E

m
can be made as small as

we please, A can be represented as nearly as we please by a

fraction
n

m
, where B is the linear unit. Hence, in practice

an approximation may be found to the value of A, sufficient
for any purpose whatever, in the following manner, which
will be easily understood by the student who has a tolerable
facility in performing the operations of algebra. Let

A contain B, p times with a remainder P ,

B contain P , q times with a remainder Q,

P contain Q, r times with a remainder R,

and so on. If the two magnitudes are commensurable, this
operation will end by one of the remainders becoming noth-
ing. For, let A and B have a common measure E, then
P has the same measure, for P is A − pB, of which both
A and pB contain E an exact number of times. Again, be-
cause B and P contain the common measure E, Q has the
same measure, and so on. All the remainders are therefore
multiples of E, and if E be the linear unit, are represented
by whole numbers. Now, if a whole number be continually
diminished by a whole number, it must, if the operation can
be continued without end, eventually become nothing. If,
therefore, the remainder never disappears, it is a sign that
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the magnitudes A and B are incommensurable. Neverthe-
less, approximate whole numbers can be found whose ratio
is as near as we please to the ratio of A and B.

From the suppositions above mentioned it appears that

A = pB + P,∗ (a)

B = qP +Q, (b)

P = rQ +R, (c)

Q = sR + S, (d)

R = tS + T, (e)

etc., etc.

Substitute in (b) the value of P derived from (a), find Q from
the result, and substitute the values of P and Q in (c); find
a value of R from the result, and substitute the values of
Q and R in (d), and so on, which give the following series of
equations:

A = pB + P,

qA = (pq + 1)B −Q,
(qr + 1)A = (pqr + p+ r)B +R,

(qrs+ q + s)A = (pqrs+ ps+ rs+ pq + 1)B − S,
(qrst+ qt+ st+ qr + 1)A =

(pqrst+ pst+ rst+ pqt+ pqr + p+ r + t)B + T.

∗Throughout these investigations the capital letters represent the
lines themselves, and not the numbers of units, which represent them,
while the small letters are whole numbers, as in the last chapter.



on the application of algebra, etc. 273

On inspection it will be found that the coefficients of
A and B in these equations may be formed by a very simple
law. In each a letter is introduced which was not in the
preceding one, and every coefficient is formed from the two
preceding, by multiplying the one immediately preceding
by the new letter, and adding to the product the one
which comes before that. Thus the third coefficient of B
is pqr + p + r; the new letter is r, and the two preceding
coefficients are pq+ 1 and p, and pqr+ p+ r = (pq+ 1)r+ p.
The remainders enter also with signs alternately positive
and negative. Let x, x′ and x′′ be the nth, (n + 1)th,
and (n + 2)th numbers of the series p, q, r, etc., and
X, X ′, and X ′′ the corresponding remainders. Let the
corresponding equations be

a A = b B +X,

a′ A = b′ B −X ′,
a′′A = b′′B +X ′′.

Here n must be supposed odd, since, were it even, the
first equation would be aA = bB − X, as will be seen by
reference to the equations deduced. Hence, from the law of
formation of the coefficients, x′′ being the new letter in the
last equation,

a′′ = a′x′′ + a,

b′′ = b′x′′ + b.

Eliminate x′′ from these two, the result of which is
a′′b− ab′′ = ab′− a′b, the first side of which is the numerator
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of
b′

a′
− b′′

a′′
, and the second of

b′

a′
− b

a
. It appears then that

b′

a′
is either greater than both

b

a
and

b′′

a′′
or less than both,

since
b′

a′
− b′′

a′′
and

b′

a′
− b

a
will both have the same sign, the

numerators being the same and the denominators positive.

It may also be proved that
b′′

a′′
lies between

b

a
and

b′

a′
by

means of the following lemma.

The fraction
m+ n

p+ q
must lie between

m

p
and

n

q
; for let

m

p
be the greater of the two last, or

m

p
>
n

q
, then mq > np,

or
mq

mp
>

np

mp
, or

q

p
>

n

m
, and 1 +

q

p
> 1 +

n

m
; therefore

1 + n
m

1 + q
p

is less than unity, and any fraction multiplied by this

is diminished. But

m+ n

p+ q
is
m

p
×

1 + n
m

1 + q
p

,

and is therefore less than
m

p
, the greater of the two. In the

same way it may be proved to be greater than
n

q
, the least

of the two.

This being premised, since
b′′

a′′
=

b′x′′ + b

a′x′′ + a′
, it lies between

b′x′′

a′x′′
and

b

a
or between

b′

a′
and

b

a
.
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Call the coefficients of A and B in the series of equations,

a1, a2, etc., b1, b2, etc., and form the series of fractions
b1
a1

,
b2
a2

,

b3
a3

, etc. The two first of these will be
p

1
and

pq + 1

q
, of which

the second is the greater, since it is p +
1

q
. Hence by what

has been proved
b3
a3

is less than
b2
a2

and greater than
b1
a1

; and

every fraction is greater or less than the one which comes
before it, according as the number of its equation is even
or odd. Again, as the numerator of the difference of two

successive fractions
a′′

b′′
and

a′

b′
, is the same as that of

a′

b′

and
a

b
, whatever the numerator of the first difference is, the

same must be that of the second, third, etc., and of all the

rest. But the numerator of the difference of
p

1
and

pq + 1

q

is 1; therefore either ab′−a′b, or a′b−ab′, is 1 according as
b′

a′

or
b

a
is the greater of the two, that is according as n is odd

or even.∗ Now since the nth and (n+ 1)th equations, n being
odd, are

a A = b B +X

and a′A = b′B −X ′;
∗We might say that ab′−a′b is alternately +1 and −1; but we wish

to avoid the use of the isolated negative sign.
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by eliminating A we have

(ab′ − a′b)B = a′X + aX ′

or B = a′X + aX ′

since ab′ − a′b = 1; and since the remainders decrease
and the coefficients increase, a′ > a and X > X ′, whence

2aX < a′X+aX ′, or 2aX ′ < B and X ′ <
B

2a
; the remainder

therefore which comes in the (n+ 1)th equation is less than
the part of B arising from dividing it into twice as many
equal parts as there are units in the nth coefficient of A;
and as this number of units may increase to any amount

whatever, by carrying the process far enough,
B

2a
may be

made as small as we please, and à fortiori, the remainders
may be made as small as we please.

The same theorem may be proved in a similar way, if we
begin at an even step of the process. Resuming the equations

a A = b B +X,

a′ A = b′ B −X ′,
a′′A = b′′B +X ′′,

we obtain from the second,

A =
b′

a′
B − X ′

a′
;

and since X ′ <
B

2a
,
X ′

a′
<

B

2aa′
, or if B be taken as the linear
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unit,
b′

a′
will express the line A with an error less than

1

2aa′
,

which last may be made as small as we please by continuing
the process.

It is also evident that
b

a
is too small, while

b′

a′
is too great;

and since X and X ′ are less than B, aA < bB+B, or
b+ 1

a
is

too great, while a′A > b′B−B, or
b′ − 1

a′
, is too small. Again,

A− b

a
B =

X

A
and

b′

a′
B−A =

X ′

a′
. Now X ′ < X and a′ > a;

whence
X ′

a′
<
X

a
; that is,

b′

a′
B exceeds A by a less quantity

than
b

a
B falls short of it, so that

b′

a′
is a nearer representation

of A than
b

a
, though on a different side of it.

We have thus shown how to find the representation of a
line by means of a linear unit, which is incommensurable with
it, to any degree of nearness which we please. This, though
little used in practice, is necessary to the theory; and the
student will see that the method here followed is nearly the
same as that of continued fractions in algebra.∗

We now come to the measurement of an angle; and here
it must be observed that there are two distinct measures
employed, one exclusively in theory, and one in practice.

∗See Lagrange’s Elementary Mathematics (Chicago, 1898), p. 2
et seq.—Ed.
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The latter is the well-known division of the right angle into
90 equal parts, each of which is one degree; that of the de-
gree into 60 equal parts, each of which is one minute; and of
the minute into 60 parts, each of which is one second. On
these it is unnecessary to enlarge, as this division is perfectly
arbitrary, and no reason can be assigned, as far as theory is
concerned, for conceiving the right angle to be so divided.
But it is far otherwise with the measure which we come to
consider, to which we shall be naturally led by the theorems
relating to the circle. Assume any angle, AOB, as the an-
gular unit, and any other angle, AOC (Fig. 11). Let r be
the number∗ of linear units contained in the radius OA, and

Fig. 11.

t and s the lengths, or number of units contained in the arcs
AB and AC. Then since the angles AOB and AOC are pro-
portional to the arcs AB and AC, or to the numbers t and s,

∗It must be recollected that the word number means both whole
and fractional number.
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we have

Angle AOC is
s

t
of the angle AOB;

and the angle AOB being the angular unit, the number
s

t
is that which expresses the angle AOC. This number is
the same for the same angle, whatever circle is chosen; in
the circle FD the proportion of the arcs DE and DF is the
same as that of AB and AC: for since similar arcs of different
circles are proportional to their radii,

AB : DE :: OA : OD.

Also

AC : DF :: OA : OD,

∴ AB : DE :: AC : DF ;

therefore the proportion of DF to DE is that of s to t, and
s

t
is the measure of the angle DOF , DOE being the unit, as

before. It only remains to choose the angular unit AOB, and
here that angle naturally presents itself, whose arc is equal to
the radius in length. This, from what is proved in Geometry,
will be the same for all circles, since in two circles, arcs which
have the same ratio (in this case that of equality) to their

radii, subtend the same angle. Let t = r, then
s

r
is the

number corresponding to the angle whose arc is s. This is the
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number which is always employed in theory as the measure
of an angle, and it has the advantage of being independent
of all linear units; for suppose s and r to be expressed, for
example, in feet, then 12s and 12r are the numbers of inches
in the same lines, and by the common theory of fractions
s

r
=

12s

12r
. Generally, the alteration of the unit does not affect

the number which expresses the ratio of two magnitudes.

When it is said that the angle =
arc

radius
, it is only meant

that, on one particular supposition, (namely, that the angle 1
is that angle whose arc is equal to the radius,) the number
of these units in any other angle is found by dividing the
number of linear units in its arc by the number of linear units
in the radius. It only remains to give a formula for finding the
number of degrees, minutes, and seconds in an angle, whose
theoretical measure is given. It is proved in geometry that
the ratio of the circumference of a circle to its diameter, or
that of half the circumference to its radius, though it cannot
be expressed exactly, is between 3.14159265 and 3.14159266.
Taking the last of these, which will be more than a sufficient
approximation for our purpose, it follows that the radius
being r, one-half of the circumference is r× 3.14159266; and
one-fourth of the circumference, or the arc of a right angle, is
r× 1.57079633. Hence the number of units above described,

in a right angle, is
arc

radius
, or 1.57079633. And the number

of seconds in a right angle is 90× 60× 60, or 324000. Hence
if ϑ be an angle expressed in units of the first kind, and
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A the number of seconds in the same angle, the proportion
of A to 324000 will also be that of ϑ to 1.57079633. To
understand this, recollect that the proportion of any angle to
the right angle is not altered by changing the units in which
both are expressed, so that the numbers which express the
two for one unit, are proportional to the like numbers for
another.

Hence

A : 324000 :: ϑ : 1.57079633;

or

A =
324000

1.57079633
× ϑ;

or

A = 206265× ϑ, very nearly.

Suppose, for example, the number of seconds in the theo-
retical unit itself is required. Here ϑ = 1 and A = 206265;

similarly if A be 1, ϑ =
1

206265
, which is the expression for

the angle of one second referred to the other unit. In this
way, any angle, whose number of seconds is given, may be
expressed in terms of the angle whose arc is equal to the
radius, which, for distinction, might be called the theoretical
unit.∗ This unit is used without exception in analysis; thus,

∗Also called a radian. See Beman and Smith’s Geometry, p. 192.—
Ed.
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in the formula, for what is called in trigonometry the sine
of x, viz.:

sinx = x− x3

2 · 3
+

x5

2 · 3 · 4 · 5
− etc.

If x be an angle of one second, it is not 1 which must be

substituted for x, but
1

206265
.

The number 3.14159265, etc., is called π, and is the mea-

sure, in theoretical units, of two right angles. Also
π

2
is the

measure of one right angle; but it must not be confounded,
as is frequently done, with 90◦. It is true that they stand for
the same angle, but on different suppositions with respect

to the unit; the unit of the first being very nearly
206265

60× 60
times that of the second.

There are methods of ascertaining the value of one mag-
nitude by means of another, which, though it varies with the
first, is not a measure of it, since the increments of the two
are not proportional; for example, when, if the first be dou-
bled, the second, though it changes in a definite manner, is
not doubled. Such is the connexion between a number and its
common logarithm, which latter increases much more slowly
than its number; since, while the logarithm changes from 0
to 1, and from 1 to 2, the number changes from 1 to 10, and
from 10 to 100, and so on.

Now, of all triangles which have the same angles, the
proportions of the sides are the same. If, therefore, any an-
gle CAB be given, and from any points B, B′, B′′, etc., in
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one of its sides, and b, b′, etc., in the other, perpendiculars
be let fall on the remaining side, the triangles BAC, B′AC ′,
bAc, etc., having a right angle in all, and the angle A com-
mon, are equiangular; that is, one angle being given, which
is not a right angle, the proportions of every right-angled
triangle in which that angle occurs are given also; and, vice
versa, if the proportion, or ratio of any two sides of a right-
angled triangle are given, the angles of the triangle are given.

Fig. 12.

To these ratios names are given; and as the ratios them-
selves are connected with the angles, so that one of either set
being given, viz., ratios or angles, all of both are known, their
names bear in them the name of the angle to which they are

supposed to be referred. Thus,
BC

AB
, or

side opposite to A

hypothenuse
,

is called the sine of A; while
AC

AB
, or

side opposite to B

hypothenuse
, or
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the sine of B, the complement∗ of A; is called the cosine
of A. The following table expresses the names which are

given to the six ratios,
BC

AB
,
AC

AB
,
BC

AC
,
AC

BC
,
AB

AC
and

AB

BC
,

relatively to both angles, with the abbreviations made use
of. The terms opp., adj., and hyp., stand for, opposite side,
adjacent side, and hypothenuse, and refer to the angle last
mentioned in the table.

THE
RATIO

IS THE BEING OR BEING
THESE ARE
WRITTEN

BC

AB
sine of A

opp.

hyp.
cosine of B

adj.

hyp.
sinA cosB

AC

AB
cosine of A

adj.

hyp.
sine of B

opp.

hyp.
cosA sinB

BC

AC
tangent of A

opp.

adj.
cotangent of B

adj.

opp.
tanA cotB

AC

BC
cotangent of A

adj.

opp.
tangent of B

opp.

adj.
cotA tanB

AB

AC
secant of A

hyp.

adj.
cosecant of B

hyp.

opp.
secA cosecB

AB

BC
cosecant of A

hyp.

opp.
secant of B

hyp.

adj.
cosecA secB

If all angles be taken, beginning from one minute, and
proceeding through 2′, 3′, etc., up to 45◦, or 2700′, and tables
be formed by a calculation, the nature of which we cannot
explain here, of their sines, cosines, and tangents, or of the
logarithms of these, the proportions of every right-angled tri-
angle, one of whose angles is an exact number of minutes, are

∗When two angles are together equal to a right angle, each is called
the complement of the other. Generally, complement is the name given
to one part of a whole relatively to the rest. Thus, 10 being made of 7
and 3, 7 is the complement of 3 to 10.
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registered. We say sines, cosines, and tangents only, because
it is evident, from the table above made, that the cosecant,
secant, and cotangent of any angle, are the reciprocals of its
sine, cosine, and tangent, respectively. Again, the table need
only include 45◦, instead of the whole right angle, because,
the sine of an angle above 45◦ being the cosine of its com-
plement, which is less than 45◦, is already registered. Now,
as all rectilinear figures can be divided into triangles, and
every triangle is either right-angled, or the sum or difference
of two right-angled triangles, a table of this sort is ultimately
a register of the proportions of all figures whatsoever. The
rules for applying these tables form the subject of trigonom-
etry, which is one of the great branches of the application of
algebra to geometry. In a right-angled triangle, whose angles
do not contain an exact number of minutes, the proportions
may be found from the tables by the method explained in
Chapter XI. of this treatise. It must be observed, that the
sine, cosine, etc., are not measures of their angle; for, though
the angle is given when either of them is given, yet, if the an-
gle be increased in any proportion, the sine is not increased
in the same proportion. Thus, sin 2A is not double of sinA.

The measurement of surfaces may be reduced to the mea-
surement of rectangles; since every figure may be divided into
triangles, and every triangle is half of a rectangle on the same
base and altitude. The superficial unit or quantity of space,
in terms of which it is chosen to express all other spaces, is
perfectly arbitrary; nevertheless, a common theorem points
out the convenience of choosing, as the superficial unit, the
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square on that line which is chosen as the linear unit. If
the sides of a rectangle contain a and b units, the rectan-
gle itself contains ab of the squares described on the unit.
This proposition is true, even when a and b are fractional.

Let the number of units in the sides be
m

n
and

p

q
, and take

another unit which is
1

nq
of the first, or is obtained by di-

viding the first unit into nq parts, and taking one of them.
Then, by the proposition just quoted, the square described
on the larger unit contains nq × nq of that described on the

smaller. Again, since
m

n
and

p

q
are the same fractions as

mp

nq
and

np

nq
, they are formed by dividing the first unit into

nq parts, and taking one of these parts mq and np times; that
is, they contain mq and np of the smaller unit; and, there-
fore, the rectangle contained by them, contains mq × np of
the square described on the smaller unit. But of these there
are nq × nq in the square on the longer unit; and, there-

fore,
mq × np
nq × nq

, or
mp× nq
nq × nq

, or
mp

nq
, is the number of the

larger squares contained in the rectangle. But
mp

nq
is the

algebraical product of
m

n
and

p

q
. This proposition is true

in the following sense, where the sides of the rectangle are
incommensurable with the unit. Whatever the unit may be,
we have shown that, for any incommensurable magnitude,
we can go on finding b and a, two whole numbers, so that
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b

a
is too little, and

b+ 1

a
too great: until a is as great as we

please. Let AB and AC be the sides of a rectangle AK, and
let them be incommensurable with the unit M . Let the lines

AF and AG, containing
b

a
and

b+ 1

a
units, be respectively

less and greater than AC; and let AD and AE, containing
c

d
and

c+ 1

d
units, be respectively less and greater than AB;

Fig. 13.

and complete the figure. The rectangles AH and AI contain,

respectively,
b

a
× c

d
and

b+ 1

a
× c+ 1

d
square units,∗ and the

first is less than the given rectangle, and the second greater;
consequently the given rectangle does not differ from either,
so much as they differ from one another. But the difference

∗“Square unit” is the abbreviation of “square described on the
unit.”
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of AH and AI is

(b+ 1)(c+ 1)

ad
− bc

ad
, or

b+ c+ 1

ad
,

or
b

ad
+

c

ad
+

1

ad
,

or
1

d

b

a
+

1

a

c

d
+

1

ad
.

Proceed through two,∗ four, six, etc., steps of the approx-
imation. The linear unit being M , the results will be such,

that
b

a
M will be always less than AC, but continually ap-

proaching to it. Hence
1

d

b

a
M is always less than

AC

d
; and

since AC remains the same, and d is a number which may
increase as much as we please, by carrying on the approxi-

mation,
AC

d
and à fortiori

1

d

b

a
M may be made as small a

line as we please; that is,
1

d

b

a
may be made as small as we

please, and so may
1

a

c

d
in the same manner. Also

1

ad
may

be made as small as we please; and therefore, also, the sum
1

d

b

a
+

1

a

c

d
+

1

ad
. But this number, when the unit is the square

unit, represents the difference of the rectangles AH and AI,

∗This is done, because, by proceeding one step at a time,
b

a
is

alternately too little and too great to represent AC; whereas we wish
the successive steps to give results always less than AC.
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and is greater than the difference of AK and AI; therefore,
the approximate fractions which represent AC and AB may
be brought so near, that their product shall, as nearly as we
please, represent the number of square units in their rectan-
gle.

In precisely the same manner it may be proved, that if
the unit of content or solidity be the cube described on the
unit of length, the number of cubical units in any rectan-
gular parallelepiped, is the product of the number of linear
units in its three sides, whether these numbers be whole or
fractional; and in the sense just established, even if they be
incommensurable with the unit.

These algebraical relations between the sides and content
of a rectangle or parallelepiped were observed by the Greek
geometers; but as they had no distinct science of algebra, and
a very imperfect system of arithmetic, while, with them, ge-
ometry was in an advanced state; instead of applying algebra
to geometry, what they knew of the first was by deduction
from the last: hence the names which, to this day, are given
to aa, aaa, ab, which are called the square of a, the cube of a,
the rectangle of a and b. The student is thus led to imagine
that he has proved that square described on the line whose
number of units is a, to contain aa square units, because he
calls the latter the square of a. He must, however, recollect,
that squares in algebra and geometry mean distinct things.
It would be much better if he would accustom himself to
call aa and aaa the second and third powers of a, by which
means the confusion would be avoided. It is, nevertheless,
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too much to expect that a method of speaking, so commonly
received, should ever be changed; all that can be done is,
to point out the real connexion of the geometrical and al-
gebraical signification. This, if once thoroughly understood,
will prevent any future misconception.
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Stäckel, Paul, 234

Stallo, J. B., 233

Straight line, 11, 195

Subject, 205

Subtraction, 21

Subtractions, impossible,
102–103

Surfaces, measurement of
incommensurable,
285 et seq.

Syllabi, mathematical, 187

Syllogisms, 211 et seq.

Symbols, invention of, 78–80

Tables, mathematical,
recommended, 169

Tannery, P., 234

Taylor, 170

Terms, geometrical and
algebraical compared,
289

Theory of equations, 181, 192

Todhunter, 190

Triangles, measurement of
proportions of,
282 et seq.

Trigonometrical ratios,
282 et seq.

Ueberweg, 214

Universal affirmative and
negative, 205

Vega, 169

Venn, 214



on the study of mathematics. 298

Weber, H., 191
Wells, 170
Whately, 213
Whole number, 74

Zero

as a figure, 14

exponents, 80, 167

its varying significance as
an algebraical result,
120 et seq.



End of the Project Gutenberg EBook of On the Study and Difficulties of

Mathematics, by Augustus De Morgan

*** END OF THIS PROJECT GUTENBERG EBOOK STUDY AND DIFFICULTIES OF MATHEMATICS ***

***** This file should be named 39088-pdf.pdf or 39088-pdf.zip *****

This and all associated files of various formats will be found in:

http://www.gutenberg.org/3/9/0/8/39088/

Produced by Andrew D. Hwang. (This ebook was produced using

OCR text generously provided by the University of

California, Berkeley, through the Internet Archive.)

Updated editions will replace the previous one--the old editions

will be renamed.

Creating the works from public domain print editions means that no

one owns a United States copyright in these works, so the Foundation

(and you!) can copy and distribute it in the United States without

permission and without paying copyright royalties. Special rules,

set forth in the General Terms of Use part of this license, apply to

copying and distributing Project Gutenberg-tm electronic works to

protect the PROJECT GUTENBERG-tm concept and trademark. Project

Gutenberg is a registered trademark, and may not be used if you

charge for the eBooks, unless you receive specific permission. If you

do not charge anything for copies of this eBook, complying with the

rules is very easy. You may use this eBook for nearly any purpose

such as creation of derivative works, reports, performances and

research. They may be modified and printed and given away--you may do

practically ANYTHING with public domain eBooks. Redistribution is

subject to the trademark license, especially commercial

redistribution.

*** START: FULL LICENSE ***

THE FULL PROJECT GUTENBERG LICENSE

PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK



license. II

To protect the Project Gutenberg-tm mission of promoting the free

distribution of electronic works, by using or distributing this work

(or any other work associated in any way with the phrase "Project

Gutenberg"), you agree to comply with all the terms of the Full Project

Gutenberg-tm License available with this file or online at

www.gutenberg.org/license.

Section 1. General Terms of Use and Redistributing Project Gutenberg-tm

electronic works

1.A. By reading or using any part of this Project Gutenberg-tm

electronic work, you indicate that you have read, understand, agree to

and accept all the terms of this license and intellectual property

(trademark/copyright) agreement. If you do not agree to abide by all

the terms of this agreement, you must cease using and return or destroy

all copies of Project Gutenberg-tm electronic works in your possession.

If you paid a fee for obtaining a copy of or access to a Project

Gutenberg-tm electronic work and you do not agree to be bound by the

terms of this agreement, you may obtain a refund from the person or

entity to whom you paid the fee as set forth in paragraph 1.E.8.

1.B. "Project Gutenberg" is a registered trademark. It may only be

used on or associated in any way with an electronic work by people who

agree to be bound by the terms of this agreement. There are a few

things that you can do with most Project Gutenberg-tm electronic works

even without complying with the full terms of this agreement. See

paragraph 1.C below. There are a lot of things you can do with Project

Gutenberg-tm electronic works if you follow the terms of this agreement

and help preserve free future access to Project Gutenberg-tm electronic

works. See paragraph 1.E below.

1.C. The Project Gutenberg Literary Archive Foundation ("the Foundation"

or PGLAF), owns a compilation copyright in the collection of Project

Gutenberg-tm electronic works. Nearly all the individual works in the

collection are in the public domain in the United States. If an

individual work is in the public domain in the United States and you are

located in the United States, we do not claim a right to prevent you from

copying, distributing, performing, displaying or creating derivative



license. III

works based on the work as long as all references to Project Gutenberg

are removed. Of course, we hope that you will support the Project

Gutenberg-tm mission of promoting free access to electronic works by

freely sharing Project Gutenberg-tm works in compliance with the terms of

this agreement for keeping the Project Gutenberg-tm name associated with

the work. You can easily comply with the terms of this agreement by

keeping this work in the same format with its attached full Project

Gutenberg-tm License when you share it without charge with others.

1.D. The copyright laws of the place where you are located also govern

what you can do with this work. Copyright laws in most countries are in

a constant state of change. If you are outside the United States, check

the laws of your country in addition to the terms of this agreement

before downloading, copying, displaying, performing, distributing or

creating derivative works based on this work or any other Project

Gutenberg-tm work. The Foundation makes no representations concerning

the copyright status of any work in any country outside the United

States.

1.E. Unless you have removed all references to Project Gutenberg:

1.E.1. The following sentence, with active links to, or other immediate

access to, the full Project Gutenberg-tm License must appear prominently

whenever any copy of a Project Gutenberg-tm work (any work on which the

phrase "Project Gutenberg" appears, or with which the phrase "Project

Gutenberg" is associated) is accessed, displayed, performed, viewed,

copied or distributed:

This eBook is for the use of anyone anywhere at no cost and with

almost no restrictions whatsoever. You may copy it, give it away or

re-use it under the terms of the Project Gutenberg License included

with this eBook or online at www.gutenberg.org

1.E.2. If an individual Project Gutenberg-tm electronic work is derived

from the public domain (does not contain a notice indicating that it is

posted with permission of the copyright holder), the work can be copied

and distributed to anyone in the United States without paying any fees

or charges. If you are redistributing or providing access to a work

with the phrase "Project Gutenberg" associated with or appearing on the

work, you must comply either with the requirements of paragraphs 1.E.1



license. IV

through 1.E.7 or obtain permission for the use of the work and the

Project Gutenberg-tm trademark as set forth in paragraphs 1.E.8 or

1.E.9.

1.E.3. If an individual Project Gutenberg-tm electronic work is posted

with the permission of the copyright holder, your use and distribution

must comply with both paragraphs 1.E.1 through 1.E.7 and any additional

terms imposed by the copyright holder. Additional terms will be linked

to the Project Gutenberg-tm License for all works posted with the

permission of the copyright holder found at the beginning of this work.

1.E.4. Do not unlink or detach or remove the full Project Gutenberg-tm

License terms from this work, or any files containing a part of this

work or any other work associated with Project Gutenberg-tm.

1.E.5. Do not copy, display, perform, distribute or redistribute this

electronic work, or any part of this electronic work, without

prominently displaying the sentence set forth in paragraph 1.E.1 with

active links or immediate access to the full terms of the Project

Gutenberg-tm License.

1.E.6. You may convert to and distribute this work in any binary,

compressed, marked up, nonproprietary or proprietary form, including any

word processing or hypertext form. However, if you provide access to or

distribute copies of a Project Gutenberg-tm work in a format other than

"Plain Vanilla ASCII" or other format used in the official version

posted on the official Project Gutenberg-tm web site (www.gutenberg.org),

you must, at no additional cost, fee or expense to the user, provide a

copy, a means of exporting a copy, or a means of obtaining a copy upon

request, of the work in its original "Plain Vanilla ASCII" or other

form. Any alternate format must include the full Project Gutenberg-tm

License as specified in paragraph 1.E.1.

1.E.7. Do not charge a fee for access to, viewing, displaying,

performing, copying or distributing any Project Gutenberg-tm works

unless you comply with paragraph 1.E.8 or 1.E.9.

1.E.8. You may charge a reasonable fee for copies of or providing

access to or distributing Project Gutenberg-tm electronic works provided

that



license. V

- You pay a royalty fee of 20% of the gross profits you derive from

the use of Project Gutenberg-tm works calculated using the method

you already use to calculate your applicable taxes. The fee is

owed to the owner of the Project Gutenberg-tm trademark, but he

has agreed to donate royalties under this paragraph to the

Project Gutenberg Literary Archive Foundation. Royalty payments

must be paid within 60 days following each date on which you

prepare (or are legally required to prepare) your periodic tax

returns. Royalty payments should be clearly marked as such and

sent to the Project Gutenberg Literary Archive Foundation at the

address specified in Section 4, "Information about donations to

the Project Gutenberg Literary Archive Foundation."

- You provide a full refund of any money paid by a user who notifies

you in writing (or by e-mail) within 30 days of receipt that s/he

does not agree to the terms of the full Project Gutenberg-tm

License. You must require such a user to return or

destroy all copies of the works possessed in a physical medium

and discontinue all use of and all access to other copies of

Project Gutenberg-tm works.

- You provide, in accordance with paragraph 1.F.3, a full refund of any

money paid for a work or a replacement copy, if a defect in the

electronic work is discovered and reported to you within 90 days

of receipt of the work.

- You comply with all other terms of this agreement for free

distribution of Project Gutenberg-tm works.

1.E.9. If you wish to charge a fee or distribute a Project Gutenberg-tm

electronic work or group of works on different terms than are set

forth in this agreement, you must obtain permission in writing from

both the Project Gutenberg Literary Archive Foundation and Michael

Hart, the owner of the Project Gutenberg-tm trademark. Contact the

Foundation as set forth in Section 3 below.

1.F.

1.F.1. Project Gutenberg volunteers and employees expend considerable



license. VI

effort to identify, do copyright research on, transcribe and proofread

public domain works in creating the Project Gutenberg-tm

collection. Despite these efforts, Project Gutenberg-tm electronic

works, and the medium on which they may be stored, may contain

"Defects," such as, but not limited to, incomplete, inaccurate or

corrupt data, transcription errors, a copyright or other intellectual

property infringement, a defective or damaged disk or other medium, a

computer virus, or computer codes that damage or cannot be read by

your equipment.

1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the "Right

of Replacement or Refund" described in paragraph 1.F.3, the Project

Gutenberg Literary Archive Foundation, the owner of the Project

Gutenberg-tm trademark, and any other party distributing a Project

Gutenberg-tm electronic work under this agreement, disclaim all

liability to you for damages, costs and expenses, including legal

fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT

LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE

PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE

TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE

LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR

INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH

DAMAGE.

1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a

defect in this electronic work within 90 days of receiving it, you can

receive a refund of the money (if any) you paid for it by sending a

written explanation to the person you received the work from. If you

received the work on a physical medium, you must return the medium with

your written explanation. The person or entity that provided you with

the defective work may elect to provide a replacement copy in lieu of a

refund. If you received the work electronically, the person or entity

providing it to you may choose to give you a second opportunity to

receive the work electronically in lieu of a refund. If the second copy

is also defective, you may demand a refund in writing without further

opportunities to fix the problem.

1.F.4. Except for the limited right of replacement or refund set forth

in paragraph 1.F.3, this work is provided to you ’AS-IS’, WITH NO OTHER

WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO



license. VII

WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.

1.F.5. Some states do not allow disclaimers of certain implied

warranties or the exclusion or limitation of certain types of damages.

If any disclaimer or limitation set forth in this agreement violates the

law of the state applicable to this agreement, the agreement shall be

interpreted to make the maximum disclaimer or limitation permitted by

the applicable state law. The invalidity or unenforceability of any

provision of this agreement shall not void the remaining provisions.

1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the

trademark owner, any agent or employee of the Foundation, anyone

providing copies of Project Gutenberg-tm electronic works in accordance

with this agreement, and any volunteers associated with the production,

promotion and distribution of Project Gutenberg-tm electronic works,

harmless from all liability, costs and expenses, including legal fees,

that arise directly or indirectly from any of the following which you do

or cause to occur: (a) distribution of this or any Project Gutenberg-tm

work, (b) alteration, modification, or additions or deletions to any

Project Gutenberg-tm work, and (c) any Defect you cause.

Section 2. Information about the Mission of Project Gutenberg-tm

Project Gutenberg-tm is synonymous with the free distribution of

electronic works in formats readable by the widest variety of computers

including obsolete, old, middle-aged and new computers. It exists

because of the efforts of hundreds of volunteers and donations from

people in all walks of life.

Volunteers and financial support to provide volunteers with the

assistance they need are critical to reaching Project Gutenberg-tm’s

goals and ensuring that the Project Gutenberg-tm collection will

remain freely available for generations to come. In 2001, the Project

Gutenberg Literary Archive Foundation was created to provide a secure

and permanent future for Project Gutenberg-tm and future generations.

To learn more about the Project Gutenberg Literary Archive Foundation

and how your efforts and donations can help, see Sections 3 and 4

and the Foundation information page at www.gutenberg.org



license. VIII

Section 3. Information about the Project Gutenberg Literary Archive

Foundation

The Project Gutenberg Literary Archive Foundation is a non profit

501(c)(3) educational corporation organized under the laws of the

state of Mississippi and granted tax exempt status by the Internal

Revenue Service. The Foundation’s EIN or federal tax identification

number is 64-6221541. Contributions to the Project Gutenberg

Literary Archive Foundation are tax deductible to the full extent

permitted by U.S. federal laws and your state’s laws.

The Foundation’s principal office is located at 4557 Melan Dr. S.

Fairbanks, AK, 99712., but its volunteers and employees are scattered

throughout numerous locations. Its business office is located at 809

North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email

contact links and up to date contact information can be found at the

Foundation’s web site and official page at www.gutenberg.org/contact

For additional contact information:

Dr. Gregory B. Newby

Chief Executive and Director

gbnewby@pglaf.org

Section 4. Information about Donations to the Project Gutenberg

Literary Archive Foundation

Project Gutenberg-tm depends upon and cannot survive without wide

spread public support and donations to carry out its mission of

increasing the number of public domain and licensed works that can be

freely distributed in machine readable form accessible by the widest

array of equipment including outdated equipment. Many small donations

($1 to $5,000) are particularly important to maintaining tax exempt

status with the IRS.

The Foundation is committed to complying with the laws regulating

charities and charitable donations in all 50 states of the United

States. Compliance requirements are not uniform and it takes a

considerable effort, much paperwork and many fees to meet and keep up

with these requirements. We do not solicit donations in locations



license. IX

where we have not received written confirmation of compliance. To

SEND DONATIONS or determine the status of compliance for any

particular state visit www.gutenberg.org/donate

While we cannot and do not solicit contributions from states where we

have not met the solicitation requirements, we know of no prohibition

against accepting unsolicited donations from donors in such states who

approach us with offers to donate.

International donations are gratefully accepted, but we cannot make

any statements concerning tax treatment of donations received from

outside the United States. U.S. laws alone swamp our small staff.

Please check the Project Gutenberg Web pages for current donation

methods and addresses. Donations are accepted in a number of other

ways including checks, online payments and credit card donations.

To donate, please visit: www.gutenberg.org/donate

Section 5. General Information About Project Gutenberg-tm electronic

works.

Professor Michael S. Hart was the originator of the Project Gutenberg-tm

concept of a library of electronic works that could be freely shared

with anyone. For forty years, he produced and distributed Project

Gutenberg-tm eBooks with only a loose network of volunteer support.

Project Gutenberg-tm eBooks are often created from several printed

editions, all of which are confirmed as Public Domain in the U.S.

unless a copyright notice is included. Thus, we do not necessarily

keep eBooks in compliance with any particular paper edition.

Most people start at our Web site which has the main PG search facility:

www.gutenberg.org

This Web site includes information about Project Gutenberg-tm,

including how to make donations to the Project Gutenberg Literary

Archive Foundation, how to help produce our new eBooks, and how to

subscribe to our email newsletter to hear about new eBooks.


	PG Boilerplate.
	Transcriber's Note.
	Front Matter.
	Contents.

	Main Matter.
	Chapter I.
	Chapter II.
	Chapter III.
	Chapter IV.
	Chapter V.
	Chapter VI.
	Chapter VII.
	Chapter VIII.
	Chapter IX.
	Chapter X.
	Chapter XI.
	Chapter XII.
	Chapter XIII.
	Chapter XIV.
	Chapter XV.
	Chapter XVI.
	Chapter XVII.

	Back Matter.
	Index

	PG License.

